
AutoCAD 2012 for Mac

AutoLISP Reference Guide

July 2011

© 2011 Autodesk, Inc. All Rights Reserved. Except as otherwise permitted by Autodesk, Inc., this publication, or parts thereof, may not
be reproduced in any form, by any method, for any purpose.

Certain materials included in this publication are reprinted with the permission of the copyright holder.

Trademarks
The following are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and other countries:
3DEC (design/logo), 3December, 3December.com, 3ds Max, Algor, Alias, Alias (swirl design/logo), AliasStudio, Alias|Wavefront (design/logo),
ATC, AUGI, AutoCAD, AutoCAD Learning Assistance, AutoCAD LT, AutoCAD Simulator, AutoCAD SQL Extension, AutoCAD SQL Interface,
Autodesk, Autodesk Envision, Autodesk Intent, Autodesk Inventor, Autodesk Map, Autodesk MapGuide, Autodesk Streamline, AutoLISP, AutoSnap,
AutoSketch, AutoTrack, Backburner, Backdraft, Built with ObjectARX (logo), Burn, Buzzsaw, CAiCE, Civil 3D, Cleaner, Cleaner Central, ClearScale,
Colour Warper, Combustion, Communication Specification, Constructware, Content Explorer, Dancing Baby (image), DesignCenter, Design
Doctor, Designer's Toolkit, DesignKids, DesignProf, DesignServer, DesignStudio, Design Web Format, Discreet, DWF, DWG, DWG (logo), DWG
Extreme, DWG TrueConvert, DWG TrueView, DXF, Ecotect, Exposure, Extending the Design Team, Face Robot, FBX, Fempro, Fire, Flame, Flare,
Flint, FMDesktop, Freewheel, GDX Driver, Green Building Studio, Heads-up Design, Heidi, HumanIK, IDEA Server, i-drop, ImageModeler, iMOUT,
Incinerator, Inferno, Inventor, Inventor LT, Kaydara, Kaydara (design/logo), Kynapse, Kynogon, LandXplorer, Lustre, MatchMover, Maya,
Mechanical Desktop, Moldflow, Moonbox, MotionBuilder, Movimento, MPA, MPA (design/logo), Moldflow Plastics Advisers, MPI, Moldflow
Plastics Insight, MPX, MPX (design/logo), Moldflow Plastics Xpert, Mudbox, Multi-Master Editing, Navisworks, ObjectARX, ObjectDBX, Open
Reality, Opticore, Opticore Opus, Pipeplus, PolarSnap, PortfolioWall, Powered with Autodesk Technology, Productstream, ProjectPoint, ProMaterials,
RasterDWG, RealDWG, Real-time Roto, Recognize, Render Queue, Retimer,Reveal, Revit, Showcase, ShowMotion, SketchBook, Smoke, Softimage,
Softimage|XSI (design/logo), Sparks, SteeringWheels, Stitcher, Stone, StudioTools, ToolClip, Topobase, Toxik, TrustedDWG, ViewCube, Visual,
Visual LISP, Volo, Vtour, Wire, Wiretap, WiretapCentral, XSI, and XSI (design/logo).

All other brand names, product names or trademarks belong to their respective holders.

Disclaimer
THIS PUBLICATION AND THE INFORMATION CONTAINED HEREIN IS MADE AVAILABLE BY AUTODESK, INC. "AS IS." AUTODESK, INC. DISCLAIMS
ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE REGARDING THESE MATERIALS.

Published by:
Autodesk, Inc.
111 McInnis Parkway
San Rafael, CA 94903, USA

Contents

Chapter 1 AutoLISP Functions . 1
AutoLISP Functions . 1

Operators . 1
+ (add) . 1
- (subtract) . 2
* (multiply) . 3
/ (divide) . 4
= (equal to) . 5
/= (not equal to) . 6
< (less than) . 7
<= (less than or equal to) . 8
> (greater than) . 9
>= (greater than or equal to) 9
~ (bitwise NOT) . 10
1+ (increment) . 11
1- (decrement) . 12

A Functions . 12
abs . 12
acad-pop-dbmod . 13
acad-push-dbmod . 13
acad_strlsort . 14
acad_truecolorcli . 15
acad_truecolordlg . 16
acdimenableupdate . 17

iii

acet-layerp-mode . 18
acet-layerp-mark . 19
alert . 20
alloc . 21
a n d . 2 1
angle . 22
angtof . 23
angtos . 24
append . 25
apply . 26
arx . 26
arxload . 27
arxunload . 28
ascii . 28
assoc . 29
atan . 30
atof . 31
a to i . 31
atom . 32
atoms-family . 33
autoarxload . 34
autoload . 34

B Functions . 35
Boole . 35
boundp . 37

C Functions . 38
caddr . 38
cadr . 39
car . 39
cdr . 40
chr . 41
close . 41
command . 42
command-s . 44
cond . 48
cons . 49
cos . 50
cvunit . 51

D Functions . 52
defun . 52
defun-q . 53
defun-q-list-ref . 54
defun-q-list-set . 55
dictadd . 56
dictnext . 58
dictremove . 59

iv | Contents

dictrename . 60
dictsearch . 61
distance . 62
distof . 63
dumpallproperties . 64

E Functions . 67
entdel . 67
entget . 68
entlast . 69
entmake . 70
entmakex . 72
entmod . 73
entnext . 75
entsel . 77
entupd . 78
e q . 8 0
equal . 81
error . 82
eval . 83
ex i t . 84
exp . 84
expand . 85
expt . 86

F Functions . 86
findfile . 86
fix . 87
float . 88
foreach . 88
function . 89

G Functions . 90
g c . 9 0
gcd . 91
getangle . 91
getcfg . 93
getcname . 94
getcorner . 94
getdist . 95
getenv . 96
getfiled . 97
getint . 99
getkword . 100
getorient . 101
getpoint . 102
getpropertyvalue . 103
getreal . 104
getstring . 105

Contents | v

getvar . 106
graphscr . 106
grclear . 107
grdraw . 107
grread . 108
grtext . 110
grvecs . 112

H Functions . 114
handent . 114

I Functions . 115
if . 115
initcommandversion . 116
initdia . 117
initget . 118
ispropertyreadonly . 123
inters . 124
itoa . 125

L Functions . 126
lambda . 126
last . 127
layoutlist . 127
layerstate-addlayers . 128
layerstate-compare . 129
layerstate-delete . 130
layerstate-export . 130
layerstate-getlastrestored 131
layerstate-getlayers . 131
layerstate-getnames . 132
layerstate-has . 132
layerstate-import . 133
layerstate-importfromdb 133
layerstate-removelayers 134
layerstate-rename . 134
layerstate-restore . 135
layerstate-save . 135
length . 136
list . 137
listp . 138
load . 139
log . 140
logand . 141
logior . 141
lsh . 142

M Functions . 143
mapcar . 143
max . 144

vi | Contents

mem . 145
member . 146
menucmd . 147
min . 147
minusp . 148

N Functions . 149
namedobjdict . 149
nentsel . 149
nentselp . 151
not . 152
nth . 153
null . 153
numberp . 154

O Functions . 155
open . 155
or . 156
osnap . 157

P Functions . 157
polar . 157
prin1 . 158
princ . 160
print . 161
progn . 161
prompt . 162

Q Functions . 163
quit . 163
quote . 163

R Functions . 164
read . 164
read-char . 165
read-line . 166
redraw . 167
regapp . 168
rem . 168
repeat . 169
reverse . 170
rtos . 171

S Functions . 172
set . 172
setcfg . 173
setenv . 174
setpropertyvalue . 175
setq . 176
setvar . 177
setview . 179
sin . 179

Contents | vii

snvalid . 180
sqrt . 182
ssadd . 183
ssdel . 184
ssget . 185
ssgetfirst . 188
sslength . 189
ssmemb . 189
ssname . 190
ssnamex . 191
sssetfirst . 194
startapp . 196
strcase . 197
strcat . 198
strlen . 198
subst . 199
substr . 200

T Functions . 201
tblnext . 201
tblobjname . 203
tblsearch . 204
terpri . 205
textbox . 205
textpage . 206
textscr . 206
trace . 207
trans . 208
type . 211

U Functions . 213
untrace . 213

V Functions . 214
ver . 214
vl-acad-defun . 215
vl-acad-undefun . 215
vl-bb-ref . 216
vl-bb-set . 216
vl-catch-all-apply . 217
vl-catch-all-error-message 218
vl-catch-all-error-p . 219
vl-cmdf . 220
vl-consp . 222
vl-directory-files . 223
vl-doc-ref . 223
vl-doc-set . 224
vl-every . 225
vl-exit-with-error . 227

viii | Contents

vl-exit-with-value . 227
vl-file-copy . 228
vl-file-delete . 229
vl-file-directory-p . 230
vl-file-rename . 231
vl-file-size . 232
vl-file-systime . 232
vl-filename-base . 233
vl-filename-directory . 234
vl-filename-extension . 234
vl-filename-mktemp . 235
vl-list* . 237
vl-list->string . 238
vl-list-length . 238
vl-load-all . 239
vl-mkdir . 240
vl-member-if . 240
vl-member-if-not . 241
vl-position . 242
vl-prin1-to-string . 243
vl-princ-to-string . 244
vl-propagate . 244
vl-registry-delete . 245
vl-registry-descendents 246
vl-registry-read . 247
vl-registry-write . 247
vl-remove . 248
vl-remove-if . 249
vl-remove-if-not . 250
vl-some . 250
vl-sort . 251
vl-sort-i . 253
vl-string->list . 254
vl-string-elt . 255
vl-string-left-trim . 255
vl-string-mismatch . 256
vl-string-position . 257
vl-string-right-trim . 258
vl-string-search . 259
vl-string-subst . 259
vl-string-translate . 261
vl-string-trim . 261
vl-symbol-name . 262
vl-symbol-value . 263
vl-symbolp . 263
vports . 264

Contents | ix

W Functions . 265
wcmatch . 265
while . 268
write-char . 269
write-line . 269

X Functions . 270
xdroom . 270
xdsize . 271

Z Functions . 272
zerop . 272

Chapter 2 Externally Defined Commands 275
Externally Defined Commands . 275

align . 275
ca l . 276
mirror3d . 277
rotate3d . 277
solprof . 278

Index . 279

x | Contents

AutoLISP Functions

AutoLISP Functions
The following is a catalog of the AutoLISP

®
 functions available in AutoCAD for

Mac
®
. The functions are listed alphabetically.

In this chapter, each listing contains a brief description of the function's use
and a function syntax statement showing the order and the type of arguments
required by the function.

Note that any functions, variables, or features not described here or in other
parts of the documentation are not officially supported and are subject to change
in future releases.

For information on syntax, see AutoLISP Function Syntax in the AutoLISP
Developer's Guide.

Note that the value returned by some functions is categorized as unspecified.
This indicates you cannot rely on using the value returned from this function.

Operators

+ (add)

Returns the sum of all numbers.

(+
[number number]

...)

1

1

Arguments

number A number.

Return Values

The result of the addition. If you supply only one number argument, this
function returns the result of adding it to zero. If you supply no arguments,
the function returns 0.

Examples

(+ 1 2)
returns

3
(+ 1 2 3 4.5)
returns

10.5
(+ 1 2 3 4.0)
returns

10.0

- (subtract)

Subtracts the second and following numbers from the first and returns the
difference

(-
[number number]

...)

Arguments

number A number.

Return Values

The result of the subtraction. If you supply more than two number arguments,
this function returns the result of subtracting the sum of the second through
the last numbers from the first number. If you supply only one number
argument, this function subtracts the number from zero, and returns a negative
number. Supplying no arguments returns 0.

Examples

2 | Chapter 1 AutoLISP Functions

(- 50 40)
returns

10
(- 50 40.0)
returns

10.0
(- 50 40.0 2.5)
returns

7.5
(- 8)
returns

-8

* (multiply)

Returns the product of all numbers

(*
[number number]

...)

Arguments

number A number.

Return Values

The result of the multiplication. If you supply only one number argument,
this function returns the result of multiplying it by one; it returns the number.
Supplying no arguments returns 0.

Examples

(* 2 3)
returns

6
(* 2 3.0)
returns

6.0
(* 2 3 4.0)

AutoLISP Functions | 3

returns

24.0
(* 3 -4.5)
returns

-13.5
(* 3)
returns

3

/ (divide)

Divides the first number by the product of the remaining numbers and returns
the quotient

(/
[number number]

...)

Arguments

number A number.

Return Values

The result of the division. If you supply more than two number arguments,
this function divides the first number by the product of the second through
the last numbers, and returns the final quotient. If you supply one number
argument, this function returns the result of dividing it by one; it returns the
number. Supplying no arguments returns 0.

Examples

(/ 100 2)
returns

50
(/ 100 2.0)
returns

50.0
(/ 100 20.0 2)
returns

4 | Chapter 1 AutoLISP Functions

2.5
(/ 100 20 2)
returns

2
(/ 4)
returns

4

= (equal to)

Compares arguments for numerical equality

(=
numstr [numstr]

...)

Arguments

numstr A number or a string.

Return Values

T, if all arguments are numerically equal; otherwise nil . If only one argument
is supplied, = returns T.

Examples

(= 4 4.0)
returns

T
(= 20 388)
returns

nil
(= 2.4 2.4 2.4)
returns

T
(= 499 499 500)
returns

nil
(= "me" "me")
returns

AutoLISP Functions | 5

T
(= "me" "you")
returns

nil

See also:

The eq (page 80) and equal (page 81) functions.

/= (not equal to)

Compares arguments for numerical inequality

(/=
numstr [numstr]

...)

Arguments

numstr A number or a string.

Return Values

T, if no two successive arguments are the same in value; otherwise nil. If only
one argument is supplied, /= returns T.

Note that the behavior of /= does not quite conform to other LISP dialects.
The standard behavior is to return T if no two arguments in the list have the
same value. In AutoLISP, /= returns T if no successive arguments have the same
value; see the examples that follow.

Examples

(/= 10 20)
returns

T
(/= "you" "you")
returns

nil
(/= 5.43 5.44)
returns

6 | Chapter 1 AutoLISP Functions

T
(/= 10 20 10 20 20)
returns

nil
(/= 10 20 10 20)
returns

T

NOTE In the last example, although there are two arguments in the list with the
same value, they do not follow one another; thus /= evaluates to T.

< (less than)

Returns T if each argument is numerically less than the argument to its right;
otherwise nil

(<
numstr [numstr]

...)

Arguments

numstr A number or a string.

Return Values

T, if each argument is numerically less than the argument to its right; otherwise
returns nil . If only one argument is supplied, < returns T.

Examples

(< 10 20)
returns

T
(< "b" "c")
returns

T
(< 357 33.2)
returns

nil
(< 2 3 88)

AutoLISP Functions | 7

returns

T
(< 2 3 4 4)
returns

nil

<= (less than or equal to)

Returns T if each argument is numerically less than or equal to the argument
to its right; otherwise returns nil

(<=
numstr [numstr]

...)

Arguments

numstr A number or a string.

Return Values

T, if each argument is numerically less than or equal to the argument to its
right; otherwise returns nil. If only one argument is supplied, <= returns T.

Examples

(<= 10 20)
returns

T
(<= "b" "b")
returns

T
(<= 357 33.2)
returns

nil
(<= 2 9 9)
returns

T
(<= 2 9 4 5)
returns

nil

8 | Chapter 1 AutoLISP Functions

> (greater than)

Returns T if each argument is numerically greater than the argument to its
right; otherwise returns nil

(>
numstr [numstr]

...)

Arguments

numstr A number or a string.

Return Values

T, if each argument is numerically greater than the argument to its right;
otherwise nil. If only one argument is supplied, > returns T.

Examples

(> 120 17)
returns

T
(> "c" "b")
returns

T
(> 3.5 1792)
returns

nil
(> 77 4 2)
returns

T
(> 77 4 4)
returns

nil

>= (greater than or equal to)

Returns T if each argument is numerically greater than or equal to the
argument to its right; otherwise returns nil

AutoLISP Functions | 9

(>=
numstr [numstr]

...)

Arguments

numstr A number or a string.

Return Values

T, if each argument is numerically greater than or equal to the argument to
its right; otherwise nil. If only one argument is supplied, >= returns T.

Examples

(>= 120 17)
returns

T
(>= "c" "c")
returns

T
(>= 3.5 1792)
returns

nil
(>= 77 4 4)
returns

T
(>= 77 4 9)
returns

nil

~ (bitwise NOT)

Returns the bitwise NOT (1's complement) of the argument

(~
int

)

Arguments

10 | Chapter 1 AutoLISP Functions

int An integer.

Return Values

The bitwise NOT (1's complement) of the argument.

Examples

(~ 3)
returns

-4
(~ 100)
returns

-101
(~ -4)
returns

3

1+ (increment)

Increments a number by 1

(1+
number

)

Arguments

number Any number.

Return Values

The argument, increased by 1.

Examples

(1+ 5)
returns

6
(1+ -17.5)
returns

-16.5

AutoLISP Functions | 11

1- (decrement)

Decrements a number by 1

(1-
number

)

Arguments

number Any number.

Return Values

The argument, reduced by 1.

Examples

(1- 5)
returns

4
(1- -17.5)
returns

-18.5

A Functions

abs

Returns the absolute value of a number

(abs
number

)

Arguments

number Any number.

Return Values

12 | Chapter 1 AutoLISP Functions

The absolute value of the argument.

Examples

(abs 100)
returns

100
(abs -100)
returns

100
(abs -99.25)
returns

99.25

acad-pop-dbmod

Restores the value of the DBMOD system variable to the value that was most
recently stored with acad-push-dbmod

(acad-pop-dbmod)

This function is used with acad-push-dbmod to control the DBMOD system
variable. The DBMOD system variable tracks changes to a drawing and triggers
save-drawing queries.

This function is implemented in acapp.arx, which is loaded by default. This
function pops the current value of the DBMOD system variable off an internal
stack.

Return Values

Returns T if successful; otherwise, if the stack is empty, returns nil.

acad-push-dbmod

Stores the current value of the DBMOD system variable

(acad-push-dbmod)

This function is used with acad-pop-dbmod to control the DBMOD system
variable. You can use this function to change a drawing without changing

AutoLISP Functions | 13

the DBMOD system variable. The DBMOD system variable tracks changes to a
drawing and triggers save-drawing queries.

This function is implemented in acapp.arx, which is loaded by default. This
function pushes the current value of the DBMOD system variable onto an internal
stack. To use acad-push-dbmod and acad-pop-dbmod, precede operations
with acad-push-dbmod and then use acad-pop-dbmod to restore the original
value of the DBMOD system variable.

Return Values

Always returns T.

Examples

The following example shows how to store the modification status of a
drawing, change the status, and then restore the original status.

(acad-push-dbmod)
(setq new_line '((0 . "LINE") (100 . "AcDbEntity") (8 .
"0")

(100 . "AcDbLine") (10 1.0 2.0 0.0) (11 2.0
1.0 0.0)

(210 0.0 0.0 1.0)))
(entmake new_line) ; Set DBMOD to flag 1
(command "_color" "2") ; Set DBMOD to flag 4
(command "_-vports" "_SI") ; Set DBMOD to flag 8
(command "_vpoint" "0,0,1") ; Set DBMOD to flag 16
(acad-pop-dbmod) ; Set DBMOD to original value

acad_strlsort

Sorts a list of strings in alphabetical order

(acad_strlsort
list

)

Arguments

list The list of strings to be sorted.

Return Values

14 | Chapter 1 AutoLISP Functions

The list in alphabetical order. If the list is invalid or if there is not enough
memory to do the sort, acad_strlsort returns nil.

Examples

Sort a list of abbreviated month names:
Command: (setq mos '("Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug"
"Sep" "Oct" "Nov" "Dec"))
("Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct"
"Nov" "Dec")
Command: (acad_strlsort mos)
("Apr" "Aug" "Dec" "Feb" "Jan" "Jul" "Jun" "Mar" "May" "Nov"
"Oct" "Sep")

acad_truecolorcli

Prompts for colors at the command line

(acad_truecolorcli
color [allowbylayer] [alternatePrompt]

)

Arguments

color A dotted pair that describes the default color. The first element of the
dotted pair must be one of the color-related DXF group codes (62, 420, or
430); for example, (62 . ColorIndex), (420 . TrueColor), or (430 .

"colorbook$colorname").

allowbylayer Omitting the allowbylayer argument or setting it to a non-nil
value enables entering bylayer or byblock to set the color. If set to nil, an
error results if bylayer or byblock is entered.

alternateprompt An optional prompt string. If this string is omitted, the default
value is “New color”.

Return Values

When the operation is successful, the function returns a list of one or more
dotted pairs (depending on the tab on which the color is selected) describing
the color selected. The last dotted pair in the list indicates the color selected.
The function returns nil if the user cancels the function.

Color book color If the last item in the returned list is a 430 pair, then the
specified color originates from a color book. This returned list will also contain

AutoLISP Functions | 15

a 420 pair that describes the corresponding true color and a 62 pair that
describes the closest matching color index value.

True color If the returned list contains a 420 pair as the last item, then a true
color was specified (as “Red,Green,Blue”). The list will also contain a 62 pair
that indicates the closest matching color index. No 430 pair will be present.

Color index If the last item in the list is a 62 pair, then a colorindex was
chosen. No other dotted pairs will be present in the returned list.

Examples

Prompt for a color selection at the command line with a purple color index
default selection and alternative text for the command prompt:
Command: (acad_truecolorcli '(62 . 215) 1 "Pick a color")
New Color [Truecolor/COlorbook] <215>:
((62 . 215))

Prompt for a color selection at the command line with a yellow color index
default selection, then set the color by layer:
Command: (acad_truecolorcli '(62 . 2))
New Color [Truecolor/COlorbook] <2 (yellow)>: bylayer
((62 . 256))

acad_truecolordlg

Displays the AutoCAD color selection dialog box with tabs for index color,
true color, and color books

(acad_truecolordlg
color [allowbylayer] [currentlayercolor]

)

Arguments

color A dotted pair that describes the default color. The first element of the
dotted pair must be one of the color-related DXF group codes (62, 420, or
430); for example, (62 . ColorIndex), (420 . TrueColor), or (430 .

"colorbook$colorname").

allowbylayer If set to nil, disables the ByLayer and ByBlock buttons. Omitting
the allowbylayer argument or setting it to a non-nil value enables the ByLayer
and ByBlock buttons.

16 | Chapter 1 AutoLISP Functions

currentlayercolor Optional dotted pair in the same form as color that sets the
value of the bylayer/byblock color in the dialog.

Return Values

When the operation is successful, the function returns a list of one or more
dotted pairs (depending on the tab on which the color is selected) describing
the color selected. The last dotted pair in the list indicates the color selected.
The function returns nil if the user cancels the dialog box.

Color book color If the last item in the returned list is a 430 pair, then the
specified color originates from a color book. This returned list will also contain
a 420 pair that describes the corresponding true color and a 62 pair that
describes the closest matching color index value.

True color If the returned list contains a 420 pair as the last item, then a true
color was specified (as “Red,Green,Blue”). The list will also contain a 62 pair
that indicates the closest matching color index. No 430 pair will be present.

Color index If the last item in the list is a 62 pair, then a color index was
chosen. No other dotted pairs will be present in the returned list.

Examples

Open the color selection dialog to the Color Index tab and accept the purple
default selection:
Command: (acad_truecolordlg '(62 . 215))
((62 . 215))

Open the color selection dialog to the True Color tab with a green default
selection and with the By Layer and By Block buttons disabled:
Command: (acad_truecolordlg '(420 . 2686760) nil)
((62 . 80) (420 . 2686760))

Open the color selection dialog to the Color Books tab and accept the mustard
default selection:
Command: (acad_truecolordlg '(430 . "RAL CLASSIC$RAL 1003"))
((62 . 40) (420 . 16235019) (430 . "RAL CLASSIC$RAL 1003"))

acdimenableupdate

Controls the automatic updating of associative dimensions

(acdimenableupdate nil | T)

AutoLISP Functions | 17

The acdimenableupdate function is intended for developers who are editing
geometry and don't want the dimension to be updated until after the edits
are complete.

Arguments

nil Associative dimensions will not update (even if the geometry is modified)
until the DIMREGEN command is entered.

T Enable automatic updating of associative dimensions when the geometry
is modified.

Return Values

nil

Examples

Disable the automatic update of associative dimensions in the drawing:
Command: (acdimenableupdate nil)

Enable the automatic update of associative dimensions in the drawing:
Command: (acdimenableupdate T)

acet-layerp-mode

Queries and sets the LAYERPMODE setting

(acet-layerp-mode [
status

])

Arguments

status Specifying T turns LAYERPMODE on, enabling layer-change tracking.
Nil turns LAYERPMODE off.

If this argument is not present, acet-layerp-mode returns the current status
of LAYERPMODE.

Return Values

T if current status of LAYERPMODE is on; nil if LAYERPMODE is off.

Examples

Check the current status of LAYERPMODE:
Command: (acet-layerp-mode)

18 | Chapter 1 AutoLISP Functions

T

Turn LAYERPMODE off:
Command: (acet-layerp-mode nil)
nil

Check the current status of LAYERPMODE:
Command: (acet-layerp-mode)
nil

See also:

The LAYERP and LAYERPMODE commands in the Command Reference.

acet-layerp-mark

Places beginning and ending marks for Layer Previous recording

(acet-layerp-mark [
status

])

The acet-layerp-mark function allows you to group multiple layer commands
into a single transaction so that they can be undone by issuing LAYERP a
single time. LAYERPMODE must be on in order to set marks.

Arguments

status Specifying T sets a begin mark. Specifying nil sets an end mark, clearing
the begin mark.

If status is omitted, acet-layerp-mark returns the current mark status for layer
settings.

Return Values

T if a begin mark is in effect; otherwise nil.

Examples

The following code changes layer 0 to blue, and then makes several additional
layer changes between a set of begin and end marks. If you issue LAYERP after
running this code, layer 0 reverts to blue.

(defun TestLayerP ()

AutoLISP Functions | 19

;; Turn LAYERPMODE on, if it isn't already
(if (not (acet-layerp-mode))
(acet-layerp-mode T)

)
;; Set layer 0 to the color blue
(command "_.layer" "_color" "blue" "0" "")
;; Set a begin mark
(acet-layerp-mark T)
;; Issue a series of layer commands, and then set an end
mark
(command "_.layer" "_color" "green" "0" "")
(command "_.layer" "_thaw" "*" "")
(command "_.layer" "_unlock" "*" "")
(command "_.layer" "_ltype" "hidden" "0" "")
(command "_.layer" "_color" "red" "0" "")
;; Set an end mark
(acet-layerp-mark nil)

)

See also:

The LAYERP command in the Command Reference.

alert

Displays a dialog box containing an error or warning message

(alert
string

)

Arguments

string The string to appear in the alert box.

Return Values

nil

Examples

Display a message in an alert box:

(alert "That function is not available.")

20 | Chapter 1 AutoLISP Functions

Display a multiple line message, by using the newline character in string:

(alert "That function\nis not available.")

NOTE

Line length and the number of lines in an alert box are platform, device, and
window dependent. AutoCAD for Mac truncates any string that is too long
to fit inside an alert box.

alloc

Sets the size of the segment to be used by the expand function

(alloc n-alloc)

Arguments

n-alloc An integer indicating the amount of memory to be allocated. The
integer represents the number of symbols, strings, usubrs, reals, and cons cells.

Return Values

The previous setting of n-alloc.

Examples

_$
(alloc 100)

1000

See also:

The expand (page 85) function.

and

Returns the logical AND of the supplied arguments

(and

AutoLISP Functions | 21

[expr

...
]

)

Arguments

expr Any expression.

Return Values

Nil, if any of the expressions evaluate to nil; otherwise T. If and is issued
without arguments, it returns T.

Examples
Command: (setq a 103 b nil c "string")
"string"
Command: (and 1.4 a c)
T
Command: (and 1.4 a b c)
nil

angle

Returns an angle in radians of a line defined by two endpoints

(angle
pt1 pt2

)

Arguments

pt1 An endpoint.

pt2 An endpoint.

Return Values

An angle, in radians.

The angle is measured from the X axis of the current construction plane, in
radians, with angles increasing in the counterclockwise direction. If 3D points
are supplied, they are projected onto the current construction plane.

Examples

22 | Chapter 1 AutoLISP Functions

Command: (angle '(1.0 1.0) '(1.0 4.0))
1.5708
Command: (angle '(5.0 1.33) '(2.4 1.33))
3.14159

See also:

The topic in the Angular Conversion AutoLISP Developer's Guide.

angtof

Converts a string representing an angle into a real (floating-point) value in
radians

(angtof
string [units]

)

Arguments

string A string describing an angle based on the format specified by the mode
argument. The string must be a string that angtof can parse correctly to the
specified unit. It can be in the same form that angtos returns, or in a form
that AutoCAD for Mac allows for keyboard entry.

units Specifies the units in which the string is formatted. The value should
correspond to values allowed for the AutoCAD for Mac system variable AUNITS
in the Command Reference. If unit is omitted, angtof uses the current value of
AUNITS. The following units may be specified:

0 -- Degrees

1 -- Degrees/minutes/seconds

2 -- Grads

3 -- Radians

4 -- Surveyor's units

Return Values

A real value, if successful; otherwise nil.

The angtof and angtos functions are complementary: if you pass angtof a
string created by angtos, angtof is guaranteed to return a valid value, and
vice versa (assuming the unit values match).

AutoLISP Functions | 23

Examples
Command: (angtof "45.0000")
0.785398
Command: (angtof "45.0000" 3)
1.0177

See also:

The angtos (page 24) function.

angtos

Converts an angular value in radians into a string

(angtos
angle [unit [precision]]

)

Arguments

angle A real number, in radians.

unit An integer that specifies the angular units. If unit is omitted, angtos uses
the current value of the AutoCAD for Mac system variable AUNITS. The
following units may be specified:

0 -- Degrees

1 -- Degrees/minutes/seconds

2 -- Grads

3 -- Radians

4 -- Surveyor's units

precision An integer specifying the number of decimal places of precision to
be returned. If omitted, angtos uses the current setting of the AutoCAD for
Mac system variable AUPREC in the Command Reference.

The angtos function takes angle and returns it edited into a string according
to the settings of unit, precision, the AutoCAD for Mac UNITMODE system
variable, and the DIMZIN dimensioning variable in the Command Reference.

The angtos function accepts a negative angle argument, but always reduces it
to a positive value between zero and 2 pi radians before performing the
specified conversion.

24 | Chapter 1 AutoLISP Functions

The UNITMODE system variable affects the returned string when surveyor's
units are selected (a unit value of 4). If UNITMODE = 0, spaces are included
in the string (for example, “N 45d E”); if UNITMODE = 1, no spaces are
included in the string (for example, “N45dE”).

Return Values

A string, if successful; otherwise nil.

Examples
Command: (angtos 0.785398 0 4)
"45.0000"
Command: (angtos -0.785398 0 4)
"315.0000"
Command: (angtos -0.785398 4)
"S 45d E"

NOTE Routines that use the angtos function to display arbitrary angles (those
not relative to the value of ANGBASE) should check and consider the value of
ANGBASE.

See also:

The angtof (page 23) function and String Conversions in the AutoLISP
Developer's Guide.

append

Takes any number of lists and appends them together as one list

(append
[list

...
]

)

Arguments

list A list.

Return Values

A list with all arguments appended to the original. If no arguments are
supplied, append returns nil.

AutoLISP Functions | 25

Examples
Command: (append '(a b) '(c d))
(A B C D)
Command: (append '((a)(b)) '((c)(d)))
((A) (B) (C) (D))

apply

Passes a list of arguments to, and executes, a specified function

(apply '
function list

)

Arguments

'function A function. The function argument can be either a symbol identifying
a defun, or a lambda expression.

list A list. Can be nil, if the function accepts no arguments.

Return Values

The result of the function call.

Examples
Command: (apply '+ '(1 2 3))
6
Command: (apply 'strcat '("a" "b" "c"))
"abc"

arx

Returns a list of the currently loaded ObjectARX applications

(arx)

Return Values

A list of ObjectARX
®
 application file names; the path is not included in the

file name.

Examples

26 | Chapter 1 AutoLISP Functions

Command: (arx)
("layermanager.bundle" "mtextformat.bundle" "opm.bundle")

See also:

The arxload (page 27) and arxunload (page 28) functions.

arxload

Loads an ObjectARX application

(arxload
application [onfailure]

)

Arguments

application A quoted string or a variable that contains the name of an
executable file. You can omit the .bundle extension from the file name.

You must supply the full path name of the ObjectARX executable file, unless
the file is in a directory that is in the AutoCAD for Mac support file search
path.

onfailure An expression to be executed if the load fails.

Return Values

The application name, if successful. If unsuccessful and the onfailure argument
is supplied, arxload returns the value of this argument; otherwise, failure
results in an error message.

If you attempt to load an application that is already loaded, arxload issues
an error message. You may want to check the currently loaded ObjectARX
applications with the arx function before using arxload.

Examples

Load the acbrowser.bundle file supplied in the AutoCAD for Mac installation
directory:
Command: (arxload "/Applications/Autodesk/AutoCAD
2012/AutoCAD.app/acbrowser.bundle")
"/Applications/Autodesk/AutoCAD
2012/AutoCAD.app/acbrowser.bundle"

AutoLISP Functions | 27

See also:

The arxunload (page 28) function.

arxunload

Unloads an ObjectARX application

(arxunload
application [onfailure]

)

Arguments

application A quoted string or a variable that contains the name of a file that
was loaded with the arxload function. You can omit the .bundle extension
and the path from the file name.

onfailure An expression to be executed if the unload fails.

Return Values

The application name, if successful. If unsuccessful and the onfailure argument
is supplied, arxunload returns the value of this argument; otherwise, failure
results in an error message.

Note that locked ObjectARX applications cannot be unloaded. ObjectARX
applications are locked by default.

Examples

Unload the acbrowse application that was loaded in the arxload function
example:
Command: (arxunload "acbrowser")
"acbrowser"

See also:

The arxload (page 27) function.

ascii

Returns the conversion of the first character of a string into its ASCII character
code (an integer)

28 | Chapter 1 AutoLISP Functions

(ascii
string

)

Arguments

string A string.

Return Values

An integer.

Examples
Command: (ascii "A")
65
Command: (ascii "a")
97
Command: (ascii "BIG")
66

assoc

Searches an association list for an element and returns that association list
entry

(assoc
element alist

)

Arguments

element Key of an element in an association list.

alist An association list to be searched.

Return Values

The alist entry, if successful. If assoc does not find element as a key in alist, it
returns nil.

Examples
Command: (setq al '((name box) (width 3) (size 4.7263) (depth 5)))
((NAME BOX) (WIDTH 3) (SIZE 4.7263) (DEPTH 5))
Command: (assoc 'size al)

AutoLISP Functions | 29

(SIZE 4.7263)
Command: (assoc 'weight al)
nil

atan

Returns the arctangent of a number in radians

(atan
num1 [num2]

)

Arguments

num1 A number.

num2 A number.

Return Values

The arctangent of num1, in radians, if only num1 is supplied. If you supply
both num1 and num2 arguments, atan returns the arctangent of num1/num2,
in radians. If num2 is zero, it returns an angle of plus or minus 1.570796 radians
(+90 degrees or -90 degrees), depending on the sign ofnum1. The range of
angles returned is -pi/2 to +pi/2 radians.

Examples
Command: (atan 1)
0.785398
Command: (atan 1.0)
0.785398
Command: (atan 0.5)
0.463648
Command: (atan 1.0)
0.785398
Command: (atan -1.0)
-0.785398
Command: (atan 2.0 3.0)
0.588003
Command: (atan 2.0 -3.0)
2.55359
Command: (atan 1.0 0.0)

30 | Chapter 1 AutoLISP Functions

1.5708

atof

Converts a string into a real number

(atof
string

)

Arguments

string A string to be converted into a real number.

Return Values

A real number.

Examples
Command: (atof "97.1")
97.1
Command: (atof "3")
3.0
Command: (atof "3.9")
3.9

atoi

Converts a string into an integer

(atoi
string

)

Arguments

string A string to be converted into an integer.

Return Values

An integer.

Examples

AutoLISP Functions | 31

Command: (atoi "97")
97
Command: (atoi "3")
3
Command: (atoi "3.9")
3

See also:

The itoa (page 125) function.

atom

Verifies that an item is an atom

(atom
item

)

Arguments

item Any AutoLISP element.

Some versions of LISP differ in their interpretation of atom, so be careful when
converting from non-AutoLISP code.

Return Values

Nil if item is a list; otherwise T. Anything that is not a list is considered an
atom.

Examples
Command: (setq a '(x y z))
(X Y Z)
Command: (setq b 'a)
A
Command: (atom 'a)
T
Command: (atom a)
nil
Command: (atom 'b)
T
Command: (atom b)

32 | Chapter 1 AutoLISP Functions

T
Command: (atom '(a b c))
nil

atoms-family

Returns a list of the currently defined symbols

(atoms-family
format [symlist]

)

Arguments

format An integer value of 0 or 1 that determines the format in which
atoms-family returns the symbol names:

0 Return the symbol names as a list

1 Return the symbol names as a list of strings

symlist A list of strings that specify the symbol names you want atoms-family

to search for.

Return Values

A list of symbols. If you specify symlist, then atoms-family returns the
specified symbols that are currently defined, and returns nil for those symbols
that are not defined.

Examples
Command: (atoms-family 0)
(BNS_PRE_SEL FITSTR2LEN C:AI_SPHERE ALERT DEFUN C:BEXTEND
REM_GROUP
B_RESTORE_SYSVARS BNS_CMD_EXIT LISPED FNSPLITL...

The following code verifies that the symbols CAR, CDR, and XYZ are defined,
and returns the list as strings:
Command: (atoms-family 1 '("CAR" "CDR" "XYZ"))
("CAR" "CDR" nil)

The return value shows that the symbol XYZ is not defined.

AutoLISP Functions | 33

autoarxload

Predefines command names to load an associated ObjectARX file

(autoarxload
filename cmdlist

)

The first time a user enters a command specified in cmdlist, AutoCAD for Mac
loads the ObjectARX application specified in filename, then continues the
command.

If you associate a command with filename and that command is not defined
in the specified file, AutoCAD for Mac alerts you with an error message when
you enter the command.

Arguments

filename A string specifying the .bundle file to be loaded when one of the
commands defined by the cmdlist argument is entered at the Command
prompt. If you omit the path from filename, AutoCAD for Mac looks for the
file in the support file search path.

cmdlist A list of strings.

Return Values

nil

Examples

The following code defines the C:APP1, C:APP2, and C:APP3 functions to load
the bonusapp.bundle file:

(autoarxload "BONUSAPP" '("APP1" "APP2" "APP3"))

autoload

Predefines command names to load an associated AutoLISP file

(autoload
filename cmdlist

34 | Chapter 1 AutoLISP Functions

)

The first time a user enters a command specified in cmdlist, AutoCAD for Mac
loads the application specified in filename, then continues the command.

Arguments

filename A string specifying the .lsp file to be loaded when one of the
commands defined by the cmdlist argument is entered at the Command
prompt. If you omit the path from filename, AutoCAD for Mac looks for the
file in the Support File Search Path.

cmdlist A list of strings.

Return Values

nil

If you associate a command with filename and that command is not defined
in the specified file, AutoCAD for Mac alerts you with an error message when
you enter the command.

Examples

The following causes AutoCAD for Mac to load the bonusapp.lsp file the first
time the APP1, APP2, or APP3 commands are entered at the Command prompt:

(autoload "BONUSAPP" '("APP1" "APP2" "APP3"))

B Functions

Boole

Serves as a general bitwise Boolean function

(Boole
operator int1 [int2

...
]

)

Arguments

AutoLISP Functions | 35

operator An integer between 0 and 15 representing one of the 16 possible
Boolean functions in two variables.

int1, int2... Integers.

Note that Boole will accept a single integer argument, but the result is
unpredictable.

Successive integer arguments are bitwise (logically) combined based on this
function and on the following truth table:

Boolean truth table

operator bitInt2Int1

800

410

201

111

Each bit of int1 is paired with the corresponding bit of int2, specifying one
horizontal row of the truth table. The resulting bit is either 0 or 1, depending
on the setting of the operator bit that corresponds to this row of the truth
table.

If the appropriate bit is set in operator, the resulting bit is 1; otherwise the
resulting bit is 0. Some of the values for operator are equivalent to the standard
Boolean operations AND, OR, XOR, and NOR.

Boole function bit values

Resulting bit is 1 ifOperationOperator

Both input bits are 1AND1

Only one of the two input bits is 1XOR6

Either or both of the input bits are 1OR7

Both input bits are 0 (1's complement)NOR8

36 | Chapter 1 AutoLISP Functions

Return Values

An integer.

Examples

The following specifies a logical AND of the values 12 and 5:
Command: (Boole 1 12 5)
4

The following specifies a logical XOR of the values 6 and 5:
Command: (Boole 6 6 5)
3

You can use other values of operator to perform other Boolean operations for
which there are no standard names. For example, if operator is 4, the resulting
bits are set if the corresponding bits are set in int2 but not in int1:
Command: (Boole 4 3 14)
12

boundp

Verifies if a value is bound to a symbol

(boundp
sym

)

Arguments

sym A symbol.

Return Values

T if sym has a value bound to it. If no value is bound to sym, or if it has been
bound to nil, boundp returns nil. If sym is an undefined symbol, it is
automatically created and is bound to nil.

Examples
Command: (setq a 2 b nil)
nil
Command: (boundp 'a)
T
Command: (boundp 'b)
nil

AutoLISP Functions | 37

The atoms-family function provides an alternative method of determining
the existence of a symbol without automatically creating the symbol.

See also:

The atoms-family (page 33) function.

C Functions

caddr

Returns the third element of a list

(caddr
list

)

In AutoLISP, caddr is frequently used to obtain the Z coordinate of a 3D point
(the third element of a list of three reals).

Arguments

list A list.

Return Values

The third element in list; otherwise nil, if the list is empty or contains fewer
than three elements.

Examples
Command: (setq pt3 '(5.25 1.0 3.0))
(5.25 1.0 3.0)
Command: (caddr pt3)
3.0
Command: (caddr '(5.25 1.0))
nil

See also:

The Point Lists topic in the AutoLISP Developer's Guide.

38 | Chapter 1 AutoLISP Functions

cadr

Returns the second element of a list

(cadr
list

)

In AutoLISP, cadr is frequently used to obtain the Y coordinate of a 2D or 3D
point (the second element of a list of two or three reals).

Arguments

list A list.

Return Values

The second element in list; otherwise nil, if the list is empty or contains only
one element.

Examples
Command: (setq pt2 '(5.25 1.0))
(5.25 1.0)
Command: (cadr pt2)
1.0
Command: (cadr '(4.0))
nil
Command: (cadr '(5.25 1.0 3.0))
1.0

See also:

The Point Lists topic in the AutoLISP Developer's Guide.

car

Returns the first element of a list

(car
list

)

Arguments

AutoLISP Functions | 39

list A list.

Return Values

The first element in list; otherwise nil, if the list is empty.

Examples
Command: (car '(a b c))
A
Command: (car '((a b) c))
(A B)
Command: (car '())
nil

See also:

The Point Lists topic in the AutoLISP Developer's Guide.

cdr

Returns a list containing all but the first element of the specified list

(cdr
list

)

Arguments

list A list.

Return Values

A list containing all the elements of list, except the first element (but see Note
below). If the list is empty, cdr returns nil.

NOTE When the list argument is a dotted pair, cdr returns the second element
without enclosing it in a list.

Examples
Command: (cdr '(a b c))
(B C)
Command: (cdr '((a b) c))
(C)
Command: (cdr '())

40 | Chapter 1 AutoLISP Functions

nil
Command: (cdr '(a . b))
B
Command: (cdr '(1 . "Text"))
"Text"

See also:

The Point Lists topic in the AutoLISP Developer's Guide.

chr

Converts an integer representing an ASCII character code into a single-character
string

(chr
integer

)

Arguments

list An integer.

Return Values

A string containing the ASCII character code for integer. If the integer is not
in the range of 1-255, the return value is unpredictable.

Examples
Command: (chr 65)
"A"
Command: (chr 66)
"B"
Command: (chr 97)
"a"

close

Closes an open file

(close

AutoLISP Functions | 41

file-desc

)

Arguments

file-desc A file descriptor obtained from the open function.

Return Values

Nil if file-desc is valid; otherwise results in an error message.

After a close, the file descriptor is unchanged but is no longer valid. Data
added to an open file is not actually written until the file is closed.

Examples

The following code counts the number of lines in the file somefile.txt and sets
the variable ct equal to that number:

(setq fil "SOMEFILE.TXT")
(setq x (open fil "r") ct 0)
(while (read-line x)
(setq ct (1+ ct))

)
(close x)

command

Executes an AutoCAD for Mac command

(command
[arguments]

...)

Arguments

arguments AutoCAD for Mac commands and their options.

The arguments to the command function can be strings, reals, integers, or
points, as expected by the prompt sequence of the executed command. A null
string ("") is equivalent to pressing Enter on the keyboard. Invoking command

with no argument is equivalent to pressing Esc and cancels most AutoCAD
for Mac commands.

42 | Chapter 1 AutoLISP Functions

The command function evaluates each argument and sends it to AutoCAD
for Mac in response to successive prompts. It submits command names and
options as strings, 2D points as lists of two reals, and 3D points as lists of three
reals. AutoCAD for Mac recognizes command names only when it issues a
Command prompt.

Return Values

nil

Examples

The following example sets two variables pt1 and pt2 equal to two point values
1,1 and 1,5. It then uses the command function to issue the LINE command
in the Command Reference and pass the two point values.
Command: (setq pt1 '(1 1) pt2 '(1 5))
(1 5)
Command: (command "line" pt1 pt2 "")
line From point:
To point:
To point:
Command: nil

Restrictions and Notes

Also, if you use the command function in an acad.lsp or .mnl file, it should
be called only from within a defun statement. Use the S::STARTUP function
to define commands that need to be issued immediately when you begin a
drawing session.

For AutoCAD for Mac commands that require the selection of an object (like
the BREAK and TRIM commands in the Command Reference), you can supply
a list obtained with entsel instead of a point to select the object. For examples,
see Passing Pick Points yo AutoCAD for Mac Commands in the AutoLISP
Developer's Guide.

Commands executed from the command function are not echoed to the
command line if the CMDECHO system variable (accessible from setvar and
getvar) is set to 0.

NOTE When using the SCRIPT command with the command function, it should
be the last function call in the AutoLISP routine.

AutoLISP Functions | 43

See also:

initcommandversion (page 116)

vl-cmdf (page 220) under Command Submission in the AutoLISP Developer's
Guide

command-s

Executes an AutoCAD for Mac command and the supplied input.

(command-s
cmdname [arguments]

)

Arguments

cmdname Name of the command to execute.

arguments The command input to supply to the command being executed.

The arguments to the command function can be strings, reals, integers, or
points, as expected by the prompt sequence of the executed command. A null
string ("") is equivalent to pressing Enter on the keyboard.

Return Values

nil is returned by the function when the command is done executing on the
provided arguments. An *error* is returned when the function fails to
complete successfully.

Examples

The following example demonstrates how to execute the CIRCLE command
and create a circle with a diameter of 2.75.

Command: (command-s "_circle" "5,4" "_d" 2.75)
nil

The following example demonstrates how to prompt the user for the center
point of the circle.

Command: (setq cPt (getpoint "\nSpecify center point: "))
(5.0 4.0 0.0)

Command: (command-s "_circle" cPt "_d" 2.75)
nil

44 | Chapter 1 AutoLISP Functions

The following is an invalid use of prompting for user input with the
command-s function.

Command: (command-s "_circle" (getpoint "\nSpecify center point:
 ") "_d" 2.75)

Differences from the Command Function

The command-s function is a variation of the command function which has some
restrictions on command token content, but is both faster than command
and can be used in *error* handlers due to internal logic differences.

A command token is a single argument provided to the command-s function.
This could be a string, real, integer, point, entity name, list, and so on. The
following example shows the LINE command and three command tokens:

(command-s "_line" "0,0" "5,7" "")

The "-s" suffix stands for "subroutine" execution of the supplied command
tokens. In this form, AutoCAD for Mac is directly called from AutoLISP,
processes the supplied command tokens in a temporary command processor
distinct from the main document command processor, and then returns, thus
terminating the temporary command processor. The command that is being
executed must be started and completed in the same command-s function.

In contrast, the command function remains a "co-routine" execution of the
supplied command tokens, where AutoLISP evaluates the tokens one at a time,
sending the result to AutoCAD for Mac, and then returning to allow AutoCAD
for Mac to process that token. AutoCAD for Mac then calls AutoLISP back,
and AutoLISP resumes evaluation of the expression in progress. In this logic
flow, subsequent token expressions can query AutoCAD for Mac for the results
of previous token processing and use it.

In summary, the "co-routine" style of command token processing is more
functionally powerful, but is limited in when it can be used when running.
The "subroutine" style of command token processing can be used in a much
wider range of contexts, but processes all command tokens in advance, and
actual execution is non-interactive. For the same set of command tokens,
command-s function is significantly faster.

Known Considerations

When using the command-s function, you must take the following into
consideration:
■ Token streams fed in a single command-s expression must represent a full

command and its input. Any commands in progress when command tokens

AutoLISP Functions | 45

are all processed will be cancelled. The following is not valid with the
command-s function:

(command-s "_line")
(command-s "2,2" "12.25,9" "")

■ All command tokens will be evaluated before they are handed over to
AutoCAD for Mac for execution. In contrast, the command function actually
performs each command token evaluation and then feeds the result to
AutoCAD for Mac, which processes it before the next command token is
processed.

■ No "Pause" command tokens may be used. Expressions that interact with
the drawing area or Command Window may be used, but will all be
processed before AutoCAD for Mac receives and processes any of them.

The following is not valid with the command-s function:

(command-s "_line" "0,0" PAUSE "")

IMPORTANT Although the command-s function is similar to the command function,
caution should be taken when using U or UNDO to roll back the system state if
there is an AutoCAD for Mac command already in progress when the AutoLISP
expression is entered. In that case, the results of running UNDO may cause the
command in progress to fail or even crash AutoCAD for Mac.

error Handler

If your *error* handler uses the command function, consider updating the way
you define your custom *error* handlers using the following methods:
■ Substitute command-s for command in *error* handler

For typical *error* handler cases where the previous state of the program
needs to be restored and a few batch commands are executed, you can
substitute (command-s <...>) for (command <...>). The *error* handler
is called from the same context as it always has been.

The following demonstrates a based *error* handler using the command-s
function:

(defun my_err(s)
(prompt "\nERROR: mycmd failed or was cancelled")
(setvar "clayer" old_clayer)
(command-s "_.UNDO" "_E")
(setq *error* mv_oer)

)

46 | Chapter 1 AutoLISP Functions

(defun c:mycmd ()
(setq old_err *error*

error my_err
old_clayer (getvar "clayer")

)

(setq insPt (getpoint "\nSpecify text insertion: "))

(if (/= insPt nil)
(progn
(command-s "_.UNDO" "_BE")
(command-s "-_LAYER" "_M" "Text" "_C" "3" "" "")
(command-s "_-TEXT" insPt "" "0" "Sample Text")
(command-s "_.UNDO" "_E")

)
)

(setvar "clayer" old_clayer)
(setq *error* mv_oer)
(princ)
)

■ Retaining the use of the command function in *error* handler

If using the command-s function is not viable option, then the command
function can still be used, but only at the expense of losing access to any
local symbols that would normally be on the AutoLISP call stack at the
time of the *error* processing.

The following is an overview of what is required to continue to use the
command function in the *error* handler.

■ When overriding the *error* symbol with a custom *error* handler,
invoke the *push-error-using-command* function to inform AutoLISP
that error handling will be used with the proceeding command functions.

NOTE Whenever an AutoLISP expression evaluation begins, the AutoLISP
engine assumes that the command function will not be allowed within an
error handler.

■ If the *error* handler refers to local symbols that are on the AutoLISP
stack at the point where AutoLISP program failed or was cancelled, you
must remove those references, or make the referenced symbols global
symbols.

AutoLISP Functions | 47

All local symbols on the AutoLISP call stack are pushed out of scope
because the AutoLISP evaluator is reset before entering the *error*
handler.

Now the command function can be used within the *error* handler.

However, if your program actually pushes and pops error handlers as part
of its operations, or your AutoLISP logic can be invoked while other
unknown AutoLISP logic is invoked, there are a couple more steps you
may have to make.

■ When restoring an old error handler, also invoke the *pop-error-mode*
function to reverse the effects of any call to the
push-error-using-command or *push-error-using-stack* functions.

■ If your logic has nested pushes and pops of the *error* handler, and
an *error* handler has been set up to use the command function by
invoking *push-error-using-command*, while the nested handler will
not use it, you can provide access to the locally defined symbols on
the AutoLISP stack by invoking *push-error-using-stack* at the same
point where you set *error* to the current handler. If this is done, you
must also invoke *pop-error-mode* after the old *error* handler is
restored.

See also:

Command (page 42)

cond

Serves as the primary conditional function for AutoLISP

(cond
[

(
test result

...) ...
]

)

The cond function accepts any number of lists as arguments. It evaluates the
first item in each list (in the order supplied) until one of these items returns

48 | Chapter 1 AutoLISP Functions

a value other than nil. It then evaluates those expressions that follow the test
that succeeded.

Return Values

The value of the last expression in the sublist. If there is only one expression
in the sublist (that is, if result is missing), the value of the test expression is
returned. If no arguments are supplied, cond returns nil.

Examples

The following example uses cond to perform an absolute value calculation:

(cond
((minusp a) (- a))
(t a)

)

If the variable a is set to the value-10, this returns 10.

As shown, cond can be used as a case type function. It is common to use T as
the last (default) test expression. Here's another simple example. Given a user
response string in the variable s, this function tests the response and returns
1 if it is Y or y, 0 if it is N or n; otherwise nil.

(cond
((= s "Y") 1)
((= s "y") 1)
((= s "N") 0)
((= s "n") 0)
(t nil)

)

cons

Adds an element to the beginning of a list, or constructs a dotted list

(cons
new-first-element list-or-atom

)

Arguments

AutoLISP Functions | 49

new-first-element Element to be added to the beginning of a list. This element
can be an atom or a list.

list-or-atom A list or an atom.

Return Values

The value returned depends on the data type of list-or-atom. If list-or-atom is
a list, cons returns that list with new-first-element added as the first item in the
list. If list-or-atom is an atom, cons returns a dotted pair consisting of
new-first-element and list-or-atom.

Examples
Command: (cons 'a '(b c d))
(A B C D)
Command: (cons '(a) '(b c d))
((A) B C D)
Command: (cons 'a 2)
(A . 2)

See also:

The List Handling topic in the AutoLISP Developer's Guide.

cos

Returns the cosine of an angle expressed in radians

(cos
ang

)

Arguments

ang An angle, in radians.

Return Values

The cosine of ang, in radians.

Examples
Command: (cos 0.0)
1.0
Command: (cos pi)
-1.0

50 | Chapter 1 AutoLISP Functions

cvunit

Converts a value from one unit of measurement to another

(cvunit
value from-unit to-unit

)

Arguments

value The numeric value or point list (2D or 3D point) to be converted.

from-unit The unit that value is being converted from.

to-unit The unit that value is being converted to.

The from-unit and to-unit arguments can name any unit type found in the
acad.unt file.

Return Values

The converted value, if successful; otherwise nil, if either unit name is
unknown (not found in the acad.unt file), or if the two units are incompatible
(for example, trying to convert grams into years).

Examples
Command: (cvunit 1 "minute" "second")
60.0
Command: (cvunit 1 "gallon" "furlong")
nil
Command: (cvunit 1.0 "inch" "cm")
2.54
Command: (cvunit 1.0 "acre" "sq yard")
4840.0
Command: (cvunit '(1.0 2.5) "ft" "in")
(12.0 30.0)
Command: (cvunit '(1 2 3) "ft" "in")
(12.0 24.0 36.0)

NOTE

If you have several values to convert in the same manner, it is more efficient
to convert the value 1.0 once and then apply the resulting value as a scale
factor in your own function or computation. This works for all predefined
units except temperature, where an offset is involved as well.

AutoLISP Functions | 51

See also:

The Unit Conversion topic in the AutoLISP Developer's Guide.

D Functions

defun

Defines a function

(defun
sym ([arguments] [/ variables...]

) expr...)

Arguments

sym A symbol naming the function.

arguments The names of arguments expected by the function.

/ variables The names of one or more local variables for the function.

The slash preceding the variable names must be separated from the first local
name and from the last argument, if any, by at least one space.

expr Any number of AutoLISP expressions to be evaluated when the function
executes.

If you do not declare any arguments or local symbols, you must supply an
empty set of parentheses after the function name.

If duplicate argument or symbol names are specified, AutoLISP uses the first
occurrence of each name and ignores the following occurrences.

Return Values

The result of the last expression evaluated.

WARNING Never use the name of a built-in function or symbol for the sym
argument to defun. This overwrites the original definition and makes the built-in
function or symbol inaccessible. To get a list of built-in and previously defined
functions, use the atoms-family function.

Examples

52 | Chapter 1 AutoLISP Functions

(defun myfunc (x y) ...)
Function takes two arguments

(defun myfunc (/ a b) ...)
Function has two local variables

(defun myfunc (x / temp) ...)
One argument, one local variable

(defun myfunc () ...)
No arguments or local variables

See also:

The Symbol and Function Handling topic in the AutoLISP Developer's Guide.

defun-q

Defines a function as a list

(defun-q
sym ([arguments] [/ variables...]

) expr...)

The defun-q function is provided strictly for backward-compatibility with
previous versions of AutoLISP, and should not be used for other purposes.
You can use defun-q in situations where you need to access a function
definition as a list structure, which is the way defun was implemented in
previous, non-compiled versions of AutoLISP.

Arguments

sym A symbol naming the function.

arguments The names of arguments expected by the function.

/ variables The names of one or more local variables for the function.

The slash preceding the variable names must be separated from the first local
name and from the last argument, if any, by at least one space.

expr Any number of AutoLISP expressions to be evaluated when the function
executes.

AutoLISP Functions | 53

If you do not declare any arguments or local symbols, you must supply an
empty set of parentheses after the function name.

If duplicate argument or symbol names are specified, AutoLISP uses the first
occurrence of each name and ignores the following occurrences.

Return Values

The result of the last expression evaluated.

Examples

(defun-q my-startup (x) (print (list x)))

MY-STARTUP
(my-startup 5)

(5) (5)

Use defun-q-list-ref to display the list structure of my-startup:

(defun-q-list-ref 'my-startup)

((X) (PRINT (LIST X)))

See also:

The defun-q-list-ref (page 54) and defun-q-list-set (page 55) functions.

defun-q-list-ref

Displays the list structure of a function defined with defun-q

(defun-q-list-ref '
function

)

Arguments

function A symbol naming the function.

Return Values

The list definition of the function; otherwise nil, if the argument is not a list.

Examples

Define a function using defun-q:

54 | Chapter 1 AutoLISP Functions

(defun-q my-startup (x) (print (list x)))

MY-STARTUP

Use defun-q-list-ref to display the list structure of my-startup:

(defun-q-list-ref 'my-startup)

((X) (PRINT (LIST X)))

See also:

The defun-q (page 53) and defun-q-list-set (page 55) functions.

defun-q-list-set

Sets the value of a symbol to be a function defined by a list

(defun-q-list-set '
sym list

)

Arguments

sym A symbol naming the function

list A list containing the expressions to be included in the function.

Return Values

The sym defined.

Examples

(defun-q-list-set 'foo '((x) x))

FOO
(foo 3)

3

The following example illustrates the use of defun-q-list-set to combine two
functions into a single function. First, from the Visual LISP Console window,
define two functions with defun-q:

(defun-q s::startup (x) (print x))

S::STARTUP
(defun-q my-startup (x) (print (list x)))

AutoLISP Functions | 55

MY-STARTUP

Use defun-q-list-set to combine the functions into a single function:

(defun-q-list-set 's::startup (append

 (defun-q-list-ref 's::startup)

 (cdr (defun-q-list-ref 'my-startup))))

S::STARTUP

The following illustrates how the functions respond individually, and how
the functions work after being combined using defun-q-list-set:

(defun-q foo (x) (print (list 'foo x)))

FOO
(foo 1)

(FOO 1) (FOO 1)
(defun-q bar (x) (print (list 'bar x)))

BAR
(bar 2)

(BAR 2) (BAR 2)
(defun-q-list-set

 'foo

 (append (defun-q-list-ref 'foo)

 (cdr (defun-q-list-ref 'bar))

))

FOO
(foo 3)

(FOO 3) (BAR 3) (BAR 3)

See also:

The defun-q (page 53) and defun-q-list-ref (page 54) functions.

dictadd

Adds a nongraphical object to the specified dictionary

(dictadd

56 | Chapter 1 AutoLISP Functions

ename symbol newobj

)

Arguments

ename Name of the dictionary the object is being added to.

symbol The key name of the object being added to the dictionary; symbol must
be a unique name that does not already exist in the dictionary.

newobj A nongraphical object to be added to the dictionary.

As a general rule, each object added to a dictionary must be unique to that
dictionary. This is specifically a problem when adding group objects to the
group dictionary. Adding the same group object using different key names
results in duplicate group names, which can send the dictnext function into
an infinite loop.

Return Values

The entity name of the object added to the dictionary.

Examples

The examples that follow create objects and add them to the named object
dictionary.

Create a dictionary entry list:
Command: (setq dictionary (list '(0 . "DICTIONARY") '(100 .
"AcDbDictionary")))
((0 . "DICTIONARY") (100 . "AcDbDictionary"))

Create a dictionary object using the entmakex function:
Command: (setq xname (entmakex dictionary))
<Entity name: 1d98950>

Add the dictionary to the named object dictionary:
Command: (setq newdict (dictadd (namedobjdict)
"MY_WAY_COOL_DICTIONARY" xname))
<Entity name: 1d98950>

Create an Xrecord list:
Command: (setq datalist (append (list '(0 . "XRECORD")'(100 .
"AcDbXrecord")) '((1 . "This is my data") (10 1. 2. 3.) (70 . 33))))
((0 . "XRECORD") (100 . "AcDbXrecord") (1 . "This is my data")
(10 1.0 2.0 3.0) (70 . 33))

Make an Xrecord object:

AutoLISP Functions | 57

Command: (setq xname (entmakex datalist))
<Entity name: 1d98958>

Add the Xrecord object to the dictionary:
Command: (dictadd newdict "DATA_RECORD_1" xname)
<Entity name: 1d98958>

See also:

The dictnext (page 58), dictremove (page 59), dictrename (page 60), dict-
search (page 61), and namedobjdict (page 149) functions.

dictnext

Finds the next item in a dictionary

(dictnext
ename [rewind]

)

Arguments

ename Name of the dictionary being viewed.

rewind If this argument is present and is not nil, the dictionary is rewound
and the first entry in it is retrieved.

Return Values

The next entry in the specified dictionary; otherwise nil, when the end of
the dictionary is reached. Entries are returned as lists of dotted pairs of
DXF-type codes and values. Deleted dictionary entries are not returned.

The dictsearch function specifies the initial entry retrieved.

Use namedobjdict to obtain the master dictionary entity name.

NOTE Once you begin stepping through the contents of a dictionary, passing a
different dictionary name to dictnext will cause the place to be lost in the original
dictionary. In other words, only one global iterator is maintained for use in this
function.

Examples

58 | Chapter 1 AutoLISP Functions

Create a dictionary and an entry as shown in the example for dictadd. Then
make another Xrecord object:
Command: (setq xname (entmakex datalist))
<Entity name: 1b62d60>

Add this Xrecord object to the dictionary, as the second record in the
dictionary:
Command: (dictadd newdict "DATA_RECORD_2" xname)
<Entity name: 1b62d60>

Return the entity name of the next entry in the dictionary:
Command: (cdr (car (dictnext newdict)))
<Entity name: 1bac958>

dictnext returns the name of the first entity added to the dictionary.

Return the entity name of the next entry in the dictionary:
Command: (cdr (car (dictnext newdict)))
<Entity name: 1bac960>

dictnext returns the name of the second entity added to the dictionary.

Return the entity name of the next entry in the dictionary:
Command: (cdr (car (dictnext newdict)))
nil

There are no more entries in the dictionary, so dictnext returns nil.

Rewind to the first entry in the dictionary and return the entity name of that
entry:
Command: (cdr (car (dictnext newdict T)))
<Entity name: 1bac958>

Specifying T for the optional rewind argument causes dictnext to return the
first entry in the dictionary.

See also:

The dictadd (page 56), dictremove (page 59), dictrename (page 60), dict-
search (page 61), and namedobjdict (page 149) functions.

dictremove

Removes an entry from the specified dictionary

AutoLISP Functions | 59

(dictremove
ename symbol

)

By default, removing an entry from a dictionary does not delete it from the
database. This must be done with a call to entdel. Currently, the exceptions
to this rule are groups and mlinestyles. The code that implements these features
requires that the database and these dictionaries be up to date and, therefore,
automatically deletes the entity when it is removed (with dictremove) from
the dictionary.

Arguments

ename Name of the dictionary being modified.

symbol The entry to be removed from ename.

The dictremove function does not allow the removal of an mlinestyle from
the mlinestyle dictionary if it is actively referenced by an mline in the database.

Return Values

The entity name of the removed entry. If ename is invalid or symbol is not
found, dictremove returns nil.

Examples

The following example removes the dictionary created in the dictadd example:
Command: (dictremove (namedobjdict) "my_way_cool_dictionary")
<Entity name: 1d98950>

See also:

The dictadd (page 56), dictnext (page 58), dictrename (page 60), dictsearch
(page 61), and namedobjdict (page 149) functions.

dictrename

Renames a dictionary entry

(dictrename
ename oldsym newsym

)

60 | Chapter 1 AutoLISP Functions

Arguments

ename Name of the dictionary being modified.

oldsym Original key name of the entry.

newsym New key name of the entry.

Return Values

The newsym value, if the rename is successful. If the oldname is not present in
the dictionary, or if ename or newname is invalid, or if newname is already
present in the dictionary, then dictrename returns nil.

Examples

The following example renames the dictionary created in the dictadd sample:
Command: (dictrename (namedobjdict) "my_way_cool_dictionary"
"An even cooler dictionary")
"An even cooler dictionary"

See also:

The dictadd (page 56), dictnext (page 58), dictremove (page 59), dictsearch
(page 61), and namedobjdict (page 149) functions.

dictsearch

Searches a dictionary for an item

(dictsearch
ename symbol [setnext]

)

Arguments

ename Name of the dictionary being searched.

symbol A string that specifies the item to be searched for within the dictionary.

setnext If present and not nil, the dictnext entry counter is adjusted so the
following dictnext call returns the entry after the one returned by this
dictsearch call.

Return Values

AutoLISP Functions | 61

The entry for the specified item, if successful; otherwise nil, if no entry is
found.

Examples

The following example illustrates the use of dictsearch to obtain the dictionary
added in the dictadd example:
Command: (setq newdictlist (dictsearch (namedobjdict)
"my_way_cool_dictionary"))
((-1 . <Entity name: 1d98950>) (0 . "DICTIONARY") (5 . "52")
(102 . "{ACAD_REACTORS") (330 . <Entity name: 1d98860>) (102
. "}") (330 . <Entity name: 1d98860>) (100 . "AcDbDictionary")
(280 . 0) (281 . 1) (3 . "DATA_RECORD_1") (350 . <Entity
name: 1d98958>))

See also:

The dictadd (page 56), dictnext (page 58), dictremove (page 59), and
namedobjdict (page 149) functions.

distance

Returns the 3D distance between two points

(distance
pt1 pt2

)

Arguments

pt1 A 2D or 3D point list.

pt1 A 2D or 3D point list.

Return Values

The distance.

If one or both of the supplied points is a 2D point, then distance ignores the
Z coordinates of any 3D points supplied and returns the 2D distance between
the points as projected into the current construction plane.

Examples
Command: (distance '(1.0 2.5 3.0) '(7.7 2.5 3.0))
6.7

62 | Chapter 1 AutoLISP Functions

Command: (distance '(1.0 2.0 0.5) '(3.0 4.0 0.5))
2.82843

See also:

The Geometric Utilities topic in the AutoLISP Developer's Guide.

distof

Converts a string that represents a real (floating-point) value into a real value

(distof
string [mode]

)

The distof and rtos functions are complementary. If you pass distof a string
created by rtos, distof is guaranteed to return a valid value, and vice versa
(assuming the mode values are the same).

Arguments

string A string to be converted. The argument must be a string that distof can
parse correctly according to the units specified by mode. It can be in the same
form that rtos returns, or in a form that AutoCAD for Mac allows for keyboard
entry.

mode The units in which the string is currently formatted. The mode
corresponds to the values allowed for the AutoCAD for Mac system variable
LUNITS in the Command Reference. Specify one of the following numbers for
mode:

1 Scientific

2 Decimal

3 Engineering (feet and decimal inches)

4 Architectural (feet and fractional inches)

5 Fractional

Return Values

A real number, if successful; otherwise nil.

AutoLISP Functions | 63

NOTE The distof function treats modes 3 and 4 the same. That is, if mode specifies
3 (engineering) or 4 (architectural) units, and string is in either of these formats,
distof returns the correct real value.

dumpallproperties

Retrieves an entity’s supported properties.

(dumpallproperties
ename [context]

)

Arguments

ename Name of the entity being queried. The ename can refer to either a
graphical or non-graphical entity.

context Value expected is 0 or 1, the default is 0 when a value is not provided.
When 1 is provided as the context, some property values such as Position,
Normal, and StartPoint are promoted from a single value to individual X, Y,
and Z values.

For example, the following displays the StartPoint first as not being promoted
and then being as promoted:

■ Not promoted, context = 0

StartPoint (type: AcGePoint3d) (LocalName: StartPoint)

= 6.250000 8.750000 0.000000

■ Promoted, context = 1

StartPoint/X (type: double) (LocalName: Start X) =

6.250000

StartPoint/Y (type: double) (LocalName: Start Y) =

8.750000

StartPoint/Z (type: double) (LocalName: Start Z) =

0.000000

Return Values

nil is returned by the function while the properties and their current values
are output to the Command Window.

Examples

64 | Chapter 1 AutoLISP Functions

The following example demonstrates how to list the available properties for
a line object with the properties Delta, EndPoint, Normal, and StartPoint
promoted to individual values.

Command: (setq e1 (car (entsel "\nSelect a line: ")))
Select a line:
<Entity name: 10e2e4b20>
Command: (dumpAllProperties e1 1)

Begin dumping object (class: AcDbLine)
Angle (type: double) (RO) (LocalName: Angle) = 5.159347
Annotative (type: bool) (LocalName: Annotative) = Failed
to get value to get value
Area (type: double) (RO) (LocalName: Area) = 0.000000
BlockId (type: AcDbObjectId) (RO) = Ix
CastShadows (type: bool) = 0
ClassName (type: AcString) (RO) =
Closed (type: bool) (RO) (LocalName: Closed) = Failed to
get value
CollisionType (type: AcDb::CollisionType) (RO) = 1
Color (type: AcCmColor) (LocalName: Color) = BYLAYER
Delta/X (type: double) (RO) (LocalName: Delta X) =
3.028287
Delta/Y (type: double) (RO) (LocalName: Delta Y) =
-6.318026
Delta/Z (type: double) (RO) (LocalName: Delta Z) =
0.000000
EndParam (type: double) (RO) = 7.006281
EndPoint/X (type: double) (LocalName: End X) = 23.249243
EndPoint/Y (type: double) (LocalName: End Y) = 11.968958
EndPoint/Z (type: double) (LocalName: End Z) = 0.000000
ExtensionDictionary (type: AcDbObjectId) (RO) = Ix
Handle (type: AcDbHandle) (RO) = 1b2
HasFields (type: bool) (RO) = 0
HasSaveVersionOverride (type: bool) = 0
Hyperlinks (type: AcDbHyperlink*)
IsA (type: AcRxClass*) (RO) = AcDbLine
IsAProxy (type: bool) (RO) = 0
IsCancelling (type: bool) (RO) = 0
IsEraseStatusToggled (type: bool) (RO) = 0
IsErased (type: bool) (RO) = 0
IsModified (type: bool) (RO) = 0
IsModifiedGraphics (type: bool) (RO) = 0
IsModifiedXData (type: bool) (RO) = 0

AutoLISP Functions | 65

IsNewObject (type: bool) (RO) = 0
IsNotifyEnabled (type: bool) (RO) = 0
IsNotifying (type: bool) (RO) = 0
IsObjectIdsInFlux (type: bool) (RO) = 0
IsPeriodic (type: bool) (RO) = 0
IsPersistent (type: bool) (RO) = 1
IsPlanar (type: bool) (RO) = 1
IsReadEnabled (type: bool) (RO) = 1
IsReallyClosing (type: bool) (RO) = 1
IsTransactionResident (type: bool) (RO) = 0
IsUndoing (type: bool) (RO) = 0
IsWriteEnabled (type: bool) (RO) = 0
LayerId (type: AcDbObjectId) (LocalName: Layer) = Ix
Length (type: double) (RO) (LocalName: Length) = 7.006281
LineWeight (type: AcDb::LineWeight) (LocalName: Lineweight)
= -1
LinetypeId (type: AcDbObjectId) (LocalName: Linetype) =
Ix
LinetypeScale (type: double) (LocalName: Linetype scale)
= 1.000000
LocalizedName (type: AcString) (RO) = Line
MaterialId (type: AcDbObjectId) (LocalName: Material) =
Ix
MergeStyle (type: AcDb::DuplicateRecordCloning) (RO) = 1
Normal/X (type: double) = 0.000000
Normal/Y (type: double) = 0.000000
Normal/Z (type: double) = 1.000000
ObjectId (type: AcDbObjectId) (RO) = Ix
OwnerId (type: AcDbObjectId) (RO) = Ix
PlotStyleName (type: AcString) (LocalName: Plot style) =
ByLayer
ReceiveShadows (type: bool) = 0 Failed to get value
StartParam (type: double) (RO) = 0.000000
StartPoint/X (type: double) (LocalName: Start X) =
20.220956
StartPoint/Y (type: double) (LocalName: Start Y) =
18.286984
StartPoint/Z (type: double) (LocalName: Start Z) = 0.000000
Thickness (type: double) (LocalName: Thickness) = 0.000000
Transparency (type: AcCmTransparency) (LocalName:
Transparency) = 0
Visible (type: AcDb::Visibility) = 0
End object dump

66 | Chapter 1 AutoLISP Functions

See also:

GetPropertyValue (page 103)

IsPropertyReadOnly (page 123)

SetPropertyValue (page 175)

E Functions

entdel

Deletes objects (entities) or restores previously deleted objects

(entdel
ename

)

The entity specified by ename is deleted if it is currently in the drawing. The
entdel function restores the entity to the drawing if it has been deleted
previously in this editing session. Deleted entities are purged from the drawing
when the drawing is exited. The entdel function can delete both graphical
and nongraphical entities.

Arguments

ename Name of the entity to be deleted or restored.

Return Values

The entity name.

Usage Notes

The entdel function operates only on main entities. Attributes and polyline
vertices cannot be deleted independently of their parent entities. You can use
the command function to operate the ATTEDIT or PEDIT command in the
Command Reference to modify subentities.

You cannot delete entities within a block definition. However, you can
completely redefine a block definition, minus the entity you want deleted,
with entmake.

Examples

AutoLISP Functions | 67

Get the name of the first entity in the drawing and assign it to variable e1:
Command: (setq e1 (entnext))
<Entity name: 2c90520>

Delete the entity named by e1:
Command: (entdel e1)
<Entity name: 2c90520>

Restore the entity named by e1:
Command: (entdel e1)
<Entity name: 2c90520>

See also:

The handent (page 114) function.

entget

Retrieves an object's (entity's) definition data

(entget
ename [applist]

)

Arguments

ename Name of the entity being queried. The ename can refer to either a
graphical or a nongraphical entity.

applist A list of registered application names.

Return Values

An association list containing the entity definition of ename. If you specify
the optional applist argument, entget also returns the extended data associated
with the specified applications. Objects in the list are assigned AutoCAD DXF™

group codes for each part of the entity data.

Note that the DXF group codes used by AutoLISP differ slightly from the group
codes in a DXF file. The AutoLISP DXF group codes are documented in the
DXF Reference.

Examples

Assume that the last object created in the drawing is a line drawn from point
(1,2) to point (6,5). The following example shows code that retrieves the entity

68 | Chapter 1 AutoLISP Functions

name of the last object with the entlast function, and passes that name to
entget:
Command: (entget (entlast))
((-1 . <Entity name: 1bbd1d0>) (0 . "LINE") (330 . <Entity
name: 1bbd0c8>) (5 . "6A") (100 . "AcDbEntity") (67 . 0) (410
. "Model") (8 . "0") (100 . "AcDbLine") (10 1.0 2.0 0.0) (11
6.0 5.0 0.0) (210 0.0 0.0 1.0))

See also:

The entdel (page 67), entlast (page 69), entmod (page 73), entmake (page
70), entnext (page 75), entupd (page 78), and handent (page 114) functions.
The Entity Data Functions in the AutoLISP Developer's Guide.

entlast

Returns the name of the last nondeleted main object (entity) in the drawing

(entlast)

The entlast function is frequently used to obtain the name of a new entity
that has just been added with the command function. To be selected, the
entity need not be on the screen or on a thawed layer.

Return Values

An entity name; otherwise nil, if there are no entities in the current drawing.

Examples

Set variable e1 to the name of the last entity added to the drawing:
Command: (setq e1 (entlast))
<Entity name: 2c90538>

If your application requires the name of the last nondeleted entity (main
entity or subentity), define a function such as the following and call it instead
of entlast.

(defun lastent (/ a b)
(if (setq a (entlast))
Gets last main entity

(while (setq b (entnext a))

AutoLISP Functions | 69

If subentities follow, loops

until there are no more

(setq a b)
subentities

)
)
a
Returns last main entity

)
or subentity

See also:

The entdel (page 67), entget (page 68), entmod (page 73), entnext (page
75), entsel (page 77), and handent (page 114) functions.

entmake

Creates a new entity in the drawing

(entmake
[elist]

)

The entmake function can define both graphical and nongraphical entities.

Arguments

elist A list of entity definition data in a format similar to that returned by the
entget function. The elist argument must contain all of the information
necessary to define the entity. If any required definition data is omitted,
entmake returns nil and the entity is rejected. If you omit optional definition
data (such as the layer), entmake uses the default value.

The entity type (for example, CIRCLE or LINE) must be the first or second field
of the elist. If entity type is the second field, it can be preceded only by the
entity name. The entmake function ignores the entity name when creating
the new entity. If the elist contains an entity handle, entmake ignores that
too.

70 | Chapter 1 AutoLISP Functions

Return Values

If successful, entmake returns the entity's list of definition data. If entmake

is unable to create the entity, it returns nil.

Completion of a block definition (entmake of an endblk) returns the block's
name rather than the entity data list normally returned.

Examples

The following code creates a red circle (color 62), centered at (4,4) with a radius
of 1. The optional layer and linetype fields have been omitted and therefore
assume default values.
Command: (entmake '((0 . "CIRCLE") (62 . 1) (10 4.0 4.0 0.0) (40 . 1.0)))
((0 . "CIRCLE") (62 . 1) (10 4.0 4.0 0.0) (40 . 1.0))

Notes on Using entmake

You cannot create viewport objects with entmake.

A group 66 code is honored only for insert objects (meaning attributes follow).
For polyline entities, the group 66 code is forced to a value of 1 (meaning
vertices follow), and for all other entities it takes a default of 0. The only entity
that can follow a polyline entity is a vertex entity.

The group code 2 (block name) of a dimension entity is optional for the
entmake function. If the block name is omitted from the entity definition
list, AutoCAD for Mac creates a new one. Otherwise, AutoCAD for Mac creates
the dimension using the name provided.

For legacy reasons, entmake ignores DXF group code 100 data for the following
entity types:
■ AcDbText

■ AcDbAttribute

■ AcDbAttributeDefinition

■ AcDbBlockBegin

■ AcDbBlockEnd

■ AcDbSequenceEnd

■ AcDbBlockReference

■ AcDbMInsertBlock

■ AcDb2dVertex

■ AcDb3dPolylineVertex

■ AcDbPolygonMeshVertex

AutoLISP Functions | 71

■ AcDbPolyFaceMeshVertex

■ AcDbFaceRecord

■ AcDb2dPolyline

■ AcDb3dPolyline

■ AcDbArc

■ AcDbCircle

■ AcDbLine

■ AcDbPoint

■ AcDbFace

■ AcDbPolyFaceMesh

■ AcDbPolygonMesh

■ AcDbTrace

■ AcDbSolid

■ AcDbShape

■ AcDbViewport

NOTE In AutoCAD 2004 and later releases, the entmod function has a new behavior
in color operations. DXF group code 62 holds AutoCAD Color Index (ACI) values,
but code 420 holds true color values. If the true color value and ACI value conflict,
AutoCAD uses the 420 value, so the code 420 value should be removed before
attempting to use the code 62 value.

See also:

The entdel (page 67), entget (page 68), entmod (page 73), and handent
(page 114) functions. In the AutoLISP Developer's Guide, refer to Entity Data
Functions for additional information on creating entities in a drawing,
Adding an Entity to a Drawing for specifics on using entmake, and Creating
Complex Entities for information on creating complex entities.

entmakex

Makes a new object or entity, gives it a handle and entity name (but does not
assign an owner), and then returns the new entity name

(entmakex

72 | Chapter 1 AutoLISP Functions

[elist]

)

The entmakex function can define both graphical and nongraphical entities.

Arguments

elist A list of entity definition data in a format similar to that returned by the
entget function. The elist argument must contain all of the information
necessary to define the entity. If any required definition data is omitted,
entmakex returns nil and the entity is rejected. If you omit optional definition
data (such as the layer), entmakex uses the default value.

Return Values

If successful, entmakex returns the name of the entity created. If entmakex

is unable to create the entity, the function returns nil.

Examples

(entmakex '((0 . "CIRCLE") (62 . 1) (10 4.0 3.0 0.0) (40 . 1.0)))

<Entity name: 1d45558>

WARNING Objects and entities without owners are not written out to DWG or
DXF files. Be sure to set an owner at some point after using entmakex. For
example, you can use dictadd to set a dictionary to own an object.

See also:

The entmake (page 70) and handent (page 114) functions.

entmod

Modifies the definition data of an object (entity)

(entmod
elist

)

The entmod function updates database information for the entity name
specified by the -1 group in elist. The primary mechanism through which
AutoLISP updates the database is by retrieving entities with entget, modifying
the list defining an entity, and updating the entity in the database with

AutoLISP Functions | 73

entmod. The entmod function can modify both graphical and nongraphical
objects.

Arguments

elist A list of entity definition data in a format similar to that returned by the
entget function.

For entity fields with floating-point values (such as thickness), entmod accepts
integer values and converts them to floating point. Similarly, if you supply a
floating-point value for an integer entity field (such as color number), entmod

truncates it and converts it to an integer.

Return Values

If successful, entmod returns the elist supplied to it. If entmod is unable to
modify the specified entity, the function returns nil.

Examples

The following sequence of commands obtains the properties of an entity, and
then modifies the entity.

Set the en1 variable to the name of the first entity in the drawing:
Command: (setq en1 (entnext))
<Entity name: 2c90520>

Set a variable named ed to the entity data of entity en1:
Command: (setq ed (entget en1))
((-1 . <Entity name: 2c90520>) (0 . "CIRCLE") (5 . "4C") (100
. "AcDbEntity") (67 . 0) (8 . "0") (100 . "AcDbCircle") (10
3.45373 6.21635 0.0) (40 . 2.94827) (210 0.0 0.0 1.0))

Changes the layer group in ed from layer 0 to layer 1:
Command: (setq ed (subst (cons 8 "1") (assoc 8 ed) ed))
((-1 . <Entity name: 2c90520>) (0 . "CIRCLE") (5 . "4C") (100
. "AcDbEntity") (67 . 0) (8 . "1") (100 . "AcDbCircle") (10
3.45373 6.21635 0.0) (40 . 2.94827) (210 0.0 0.0 1.0))

Modify the layer of the en1 entity in the drawing:
Command: (entmod ed)
((-1 . <Entity name: 2c90520>) (0 . "CIRCLE") (5 . "4C") (100
. "AcDbEntity") (67 . 0) (8 . "1") (100 . "AcDbCircle") (10
3.45373 6.21635 0.0) (40 . 2.94827) (210 0.0 0.0 1.0))

Restrictions on Using entmod

74 | Chapter 1 AutoLISP Functions

There are restrictions on the changes the entmod function can make:

■ An entity's type and handle cannot be changed. If you want to do this,
use entdel to delete the entity, and then make a new entity with the
command or entmake function.

■ The entmod function cannot change internal fields, such as the entity
name in the -2 group of a seqend entity. Attempts to change such fields
are ignored.

■ You cannot use the entmod function to modify a viewport entity.

You can change an entity's space visibility field to 0 or 1 (except for viewport
objects). If you use entmod to modify an entity within a block definition, the
modification affects all instances of the block in the drawing.

Before performing an entmod on vertex entities, you should read or write the
polyline entity's header. If the most recently processed polyline entity is
different from the one to which the vertex belongs, width information (the
40 and 41 groups) can be lost.

WARNING You can use entmod to modify entities within a block definition, but
doing so can create a self-referencing block, which will cause AutoCAD for Mac
to stop.

NOTE In AutoCAD 2004 and later releases, the entmod function has a new behavior
in color operations. DXF group code 62 holds AutoCAD Color Index (ACI) values,
but code 420 holds true color values. If the true color value and ACI value conflict,
AutoCAD uses the 420 value, so the code 420 value should be removed before
attempting to use the code 62 value. For more information, perform a full
installation of AutoCAD and see the color-util.lsp file located in the
\Sample\VisualLISP folder.

See also:

The entdel (page 67), entget (page 68), entmake (page 70), entnext (page
75), and handent (page 114) functions. In the AutoLISP Developer's Guide,
refer to Modifying an Entity and Entity Data Functions and the Graphics
Screen.

entnext

Returns the name of the next object (entity) in the drawing

AutoLISP Functions | 75

(entnext
[ename]

)

Arguments

ename The name of an existing entity.

Return Values

If entnext is called with no arguments, it returns the entity name of the first
nondeleted entity in the database. If an ename argument is supplied to entnext,

the function returns the entity name of the first nondeleted entity following
ename in the database. If there is no next entity in the database, it returns nil.
The entnext function returns both main entities and subentities.

Examples

(setq e1 (entnext)) ;
Sets

e1
to the name of the first entity in

the drawing

(setq e2 (entnext e1)) ;
Sets

e2
to the name of the entity

following

e1

Notes

The entities selected by ssget are main entities, not attributes of blocks or
vertices of polylines. You can access the internal structure of these complex
entities by walking through the subentities with entnext. Once you obtain a
subentity's name, you can operate on it like any other entity. If you obtain
the name of a subentity with entnext, you can find the parent entity by
stepping forward with entnext until a seqend entity is found, then extracting
the -2 group from that entity, which is the main entity's name.

76 | Chapter 1 AutoLISP Functions

See also:

The entdel (page 67), entget (page 68), entmake (page 70), entnext (page
75), and handent (page 114) functions.

entsel

Prompts the user to select a single object (entity) by specifying a point

(entsel
[msg]

)

Arguments

msg A prompt string to be displayed to users. If omitted, entsel prompts with
the message, "Select object."

Return Values

A list whose first element is the entity name of the chosen object and whose
second element is the coordinates (in terms of the current UCS) of the point
used to pick the object.

The pick point returned by entsel does not represent a point that lies on the
selected object. The point returned is the location of the crosshairs at the time
of selection. The relationship between the pick point and the object will vary
depending on the size of the pickbox and the current zoom scale.

Examples

The following AutoCAD for Mac command sequence illustrates the use of the
entsel function and the list returned:
Command: line
From point: 1,1
To point: 6,6
To point: ENTER
Command: (setq e (entsel "Please choose an object: "))
Please choose an object: 3,3
(<Entity name: 60000014> (3.0 3.0 0.0))

When operating on objects, you may want to simultaneously select an object
and specify the point by which it was selected. Examples of this in AutoCAD
for Mac can be found in Object Snap and in the BREAK, TRIM, and EXTEND

AutoLISP Functions | 77

commands in the Command Reference. The entsel function allows AutoLISP
programs to perform this operation. It selects a single object, requiring the
selection to be a pick point. The current Osnap setting is ignored by this
function unless you specifically request it while you are in the function. The
entsel function honors keywords from a preceding call to initget.

See also:

The entget (page 68), entmake (page 70), entnext (page 75), handent (page
114), and initget (page 118) functions.

entupd

Updates the screen image of an object (entity)

(entupd
ename

)

Arguments

ename The name of the entity to be updated on the screen.

Return Values

The entity (ename) updated; otherwise nil, if nothing was updated.

Examples

Assuming that the first entity in the drawing is a 3D polyline with several
vertices, the following code modifies and redisplays the polyline:

(setq e1 (entnext)) ;
Sets

e1
to the polyline's entity name

(setq e2 (entnext e1)) ;
Sets

e2
to its first vertex

(setq ed (entget e2)) ;

78 | Chapter 1 AutoLISP Functions

Sets

ed
to the vertex data

(setq ed
(subst '(10 1.0 2.0)
(assoc 10 ed) ;

Changes the vertex's location in

ed
ed ;

to point (

1,2
)

)
)
(entmod ed) ;
Moves the vertex in the drawing

(entupd e1) ;
Regenerates the polyline entity

e1

Updating Polylines and Blocks

When a 3D (or old-style) polyline vertex or block attribute is modified with
entmod, the entire complex entity is not updated on the screen. The entupd

function can be used to cause a modified polyline or block to be updated on
the screen. This function can be called with the entity name of any part of
the polyline or block; it need not be the head entity. While entupd is intended
for polylines and blocks with attributes, it can be called for any entity. It
always regenerates the entity on the screen, including all subentities.

NOTE If entupd is used on a nested entity (an entity within a block) or on a block
that contains nested entities, some of the entities might not be regenerated. To
ensure complete regeneration, you must invoke the REGEN command in the
Command Reference.

See also:

The entget (page 68), entmod (page 73), entnext (page 75), and handent
(page 114) functions.

AutoLISP Functions | 79

eq

Determines whether two expressions are identical

(eq
expr1 expr2

)

The eq function determines whether expr1 and expr2 are bound to the same
object (by setq, for example).

Arguments

expr1 The expression to be compared.

expr2 The expression to compare with expr1.

Return Values

T if the two expressions are identical; otherwise nil.

Examples

Given the following assignments:

(setq f1 '(a b c))
(setq f2 '(a b c))
(setq f3 f2)

Compare f1 and f3:
Command: (eq f1 f3)
nil

eq returns nil because f1 and f3, while containing the same value, do not
refer to the same list.

Compare f3 and f2:
Command: (eq f3 f2)
T

eq returns T because f3 and f2 refer to the same list.

See also:

The = (equal to) (page 5) and equal (page 81) functions.

80 | Chapter 1 AutoLISP Functions

equal

Determines whether two expressions are equal

(equal
expr1 expr2 [fuzz]

)

Arguments

expr1 The expression to be compared.

expr2 The expression to compare with expr1.

fuzz A real number defining the maximum amount by which expr1 and expr2
can differ and still be considered equal.

When comparing two real numbers (or two lists of real numbers, as in points),
the two identical numbers can differ slightly if different methods are used to
calculate them. You can specify a fuzz amount to compensate for the difference
that may result from the different methods of calculation.

Return Values

T if the two expressions are equal (evaluate to the same value); otherwise nil.

Examples

Given the following assignments:

(setq f1 '(a b c))
(setq f2 '(a b c))
(setq f3 f2)
(setq a 1.123456)
(setq b 1.123457)

Compare f1 to f3:
Command: (equal f1 f3)
T

Compare f3 to f2:
Command: (equal f3 f2)
T

Compare a to b:
Command: (equal a b)

AutoLISP Functions | 81

nil

The a and b variables differ by .000001.

Compare a to b:, with fuzz argument of .000001:
Command: (equal a b 0.000001)
T

The a and b variables differ by an amount equal to the specified fuzz factor,
so equal considers the variables equal.

Comparing the eq and equal Functions

If the eq function finds that two lists or atoms are the same, the equal function
also finds them to be the same.

Any atoms that the equal function determines to be the same are also found
equivalent by eq. However, two lists that equal determines to be the same
may be found to be different according to the eq function.

See also:

The= (equal to) (page 5)and eq (page 80) functions.

error

A user-definable error-handling function

(*error*
string

)

If *error* is not nil, it is executed as a function whenever an AutoLISP error
condition exists. AutoCAD for Mac passes one argument to *error*, which is
a string containing a description of the error.

Your *error* function can include calls to the command function without
arguments (for example, (command)). This will cancel a previous AutoCAD for
Mac command called with the command function.

Return Values

This function does not return, except when using <Undefined Cross-Reference>
(page 227).

82 | Chapter 1 AutoLISP Functions

Examples

The following function does the same thing that the AutoLISP standard error
handler does. It prints the word “error,” followed by a description:

(defun *error* (msg)
(princ "error: ")
(princ msg)
(princ)

)

See also:

The vl-exit-with-error (page 227), vl-exit-with-value (page 227), vl-catch-all-
apply (page 217), vl-catch-all-error-message (page 218), and vl-catch-all-error-
p (page 219) functions.

eval

Returns the result of evaluating an AutoLISP expression

(eval
expr

)

Arguments

expr The expression to be evaluated.

Return Values

The result of the expression, after evaluation.

Examples

First, set some variables:
Command: (setq a 123)
123
Command: (setq b 'a)
A

Now evaluate some expressions:
Command: (eval 4.0)
4.0

AutoLISP Functions | 83

Command: (eval (abs -10))
10
Command: (eval a)
123
Command: (eval b)
123

exit

Forces the current application to quit

(exit)

If exit is called, it returns the error message quit/exit abort and returns to the
AutoCAD for Mac Command prompt.

See also:

The quit (page 163) function.

exp

Returns the constant e (a real number) raised to a specified power (the natural
antilog)

(exp
num

)

Arguments

num A real number.

Return Values

A real (num), raised to its natural antilogarithm.

Examples
Command: (exp 1.0)
2.71828
Command: (exp 2.2)
9.02501

84 | Chapter 1 AutoLISP Functions

Command: (exp -0.4)
0.67032

expand

Allocates additional memory for AutoLISP

(expand
n-expand

)

Arguments

n-expand An integer indicating the amount of additional memory to be
allocated. Memory is allocated as follows:
■ n-alloc free symbols

■ n-alloc free strings

■ n-alloc free usubrs

■ n-alloc free reals

■ n-alloc * n-expand cons cells

where n-alloc is the current segment size.

Return Values

An integer indicating the number of free conses divided by n-alloc.

Examples

Set the segment size to 100:

(alloc 100)

1000

Allocate memory for two additional segments:

(expand 2)

82

This ensures that AutoLISP now has memory available for at least 200
additional symbols, strings, usubrs and reals each, and 8200 free conses.

AutoLISP Functions | 85

See also:

The alloc (page 21) function.

expt

Returns a number raised to a specified power

(expt
number power

)

Arguments

number Any number.

power The power to raise number to.

Return Values

If both arguments are integers, the result is an integer; otherwise, the result
is a real.

Examples
Command: (expt 2 4)
16
Command: (expt 3.0 2.0)
9.0

F Functions

findfile

Searches the AutoCAD for Mac library path for the specified file or directory

(findfile
filename

)

86 | Chapter 1 AutoLISP Functions

The findfile function makes no assumption about the file type or extension
of filename. If filename does not specify a drive/directory prefix, findfile

searches the AutoCAD for Mac library path. If a drive/directory prefix is
supplied, findfile looks only in that directory.

Arguments

filename Name of the file or directory to be searched for.

Return Values

A string containing the fully qualified file name; otherwise nil, if the specified
file or directory is not found.

The file name returned by findfile is suitable for use with the open function.

Examples

If the current directory is / MyUtilities/lsp and it contains the file abc.lsp, the
following function call retrieves the path name:
Command: (findfile "abc.lsp")
"/MyUtilities/Lsp/abc.lsp"

If you are editing a drawing in the / My Utilities/Support directory, and the
ACAD system variable is set to / My Utilities/Support, and the file xyz.txt exists
only in the / My Utilities/Support directory, then the following command
retrieves the path name:
Command: (findfile "xyz.txt")
"/MyUtilities/Support/xyz.txt"

If the file nosuch is not present in any of the directories on the library search
path, findfile returns nil:
Command: (findfile "nosuch")
nil

fix

Returns the conversion of a real number into the nearest smaller integer

(fix
number

)

The fix function truncates number to the nearest integer by discarding the
fractional portion.

AutoLISP Functions | 87

Arguments

number A real number.

Return Values

The integer derived from number.

If number is larger than the largest possible integer (+2,147,483,647 or
-2,147,483,648 on a 32-bit platform), fix returns a truncated real (although
integers transferred between AutoLISP and AutoCAD for Mac are restricted to
16-bit values).

Examples
Command: (fix 3)
3
Command: (fix 3.7)
3

float

Returns the conversion of a number into a real number

(float
number

)

Arguments

number Any number.

Return Values

The real number derived from number.

Examples
Command: (float 3)
3.0
Command: (float 3.75)
3.75

foreach

Evaluates expressions for all members of a list

88 | Chapter 1 AutoLISP Functions

(foreach
name list [expr

...
]

)

The foreach function steps through a list, assigning each element in the list
to a variable, and evaluates each expression for every element in the list. Any
number of expressions can be specified.

Arguments

name Variable that each element in the list will be assigned to.

list List to be stepped through and evaluated.

expr Expression to be evaluated for each element in list.

Return Values

The result of the last expr evaluated. If no expr is specified, foreach returns
nil.

Examples

Print each element in a list:
Command: (foreach n '(a b c) (print n))
A
B
C C

foreach prints each element in the list and returns C, the last element. This
command is equivalent to the following sequence of commands, except that
foreach returns the result of only the last expression evaluated:

(print a)
(print b)
(print c)

function

Tells the AutoLISP compiler to link and optimize an argument as if it were a
built-in function

AutoLISP Functions | 89

(function
symbol | lambda-expr

)

The function function is identical to the quote function, except it tells the
AutoLISP compiler to link and optimize the argument as if it were a built-in
function or defun.

Arguments

symbol A symbol naming a function.

lambda-expr An expression of the following form:

(LAMBDA arguments {S-expression}*)

Return Values

The result of the evaluated expression.

Examples

The AutoLISP compiler cannot optimize the quoted lambda expression in the
following code:

(mapcar
'(lambda (x) (* x x))

'(1 2 3))

After adding the function function to the expression, the compiler can
optimize the lambda expression. For example:

(mapcar
(function (lambda (x) (* x x)))

'(1 2 3))

G Functions

gc

Forces a garbage collection, which frees up unused memory

90 | Chapter 1 AutoLISP Functions

(gc)

See also:

The Memory Management Functions topic in the AutoLISP Developer's
Guide.

gcd

Returns the greatest common denominator of two integers

(gcd
int1 int2

)

Arguments

int1 An integer; must be greater than 0.

int2 An integer; must be greater than 0.

Return Values

An integer representing the greatest common denominator between int1 and
int2.

Examples
Command: (gcd 81 57)
3
Command: (gcd 12 20)
4

getangle

Pauses for user input of an angle, and returns that angle in radians

(getangle
[pt] [msg]

)

Arguments

AutoLISP Functions | 91

pt A 2D base point in the current UCS.

The pt argument, if specified, is assumed to be the first of two points, so the
user can show AutoLISP the angle by pointing to one other point. You can
supply a 3D base point, but the angle is always measured in the current
construction plane.

msg A string to be displayed to prompt the user.

Return Values

The angle specified by the user, in radians.

The getangle function measures angles with the zero-radian direction (set by
the ANGBASE system variable in the Command Reference) with angles increasing
in the counterclockwise direction. The returned angle is expressed in radians
with respect to the current construction plane (the XY plane of the current
UCS, at the current elevation).

Examples

The following code examples show how different arguments can be used with
getangle:
Command: (setq ang (getangle))
Command: (setq ang (getangle '(1.0 3.5)))
Command: (setq ang (getangle "Which way? "))
Command: (setq ang (getangle '(1.0 3.5) "Which way? "))

Usage Notes

Users can specify an angle by entering a number in the AutoCAD for Mac
current angle units format. Although the current angle units format might be
in degrees, grads, or some other unit, this function always returns the angle
in radians. The user can also show AutoLISP the angle by pointing to two 2D
locations in the drawing area. AutoCAD for Mac draws a rubber-band line
from the first point to the current crosshairs position to help you visualize
the angle.

It is important to understand the difference between the input angle and the
angle returned by getangle. Angles that are passed to getangle are based on
the current settings of ANGDIR and ANGBASE in the Command Reference.
However, once an angle is provided, it is measured in a counterclockwise
direction (ignoring ANGDIR) with zero radians as the current setting of
ANGBASE.

The user cannot enter another AutoLISP expression as the response to a
getangle request.

92 | Chapter 1 AutoLISP Functions

See also:

The illustration and comparison to the getorient (page 101) function, the
initget (page 118) function, and The getxxx Functions in the AutoLISP
Developer's Guide.

getcfg

Retrieves application data from the AppData section of the acad.cfg file

(getcfg
cfgname

)

Arguments

cfgname A string (maximum length of 496 characters) naming the section and
parameter value to retrieve.

The cfgname argument must be a string of the following form:

"AppData/
application_name

/
section_name

/.../
param_name

"

Return Values

Application data, if successful. If cfgname is not valid, getcfg returns nil.

Examples

Assuming the WallThk parameter in the AppData/ArchStuff section has a
value of 8, the following command retrieves that value:
Command: (getcfg "AppData/ArchStuff/WallThk")
"8"

See also:

The setcfg (page 173) function.

AutoLISP Functions | 93

getcname

Retrieves the localized or English name of an AutoCAD for Mac command

(getcname
cname

)

Arguments

cname The localized or underscored English command name; must be 64
characters or less in length.

Return Values

If cname is not preceded by an underscore (assumed to be the localized
command name), getcname returns the underscored English command name.
If cname is preceded by an underscore, getcname returns the localized
command name. This function returns nil if cname is not a valid command
name.

Examples

In a French version of AutoCAD for Mac, the following is true.

(getcname "ETIRER")

returns

"_STRETCH"
(getcname "_STRETCH")

returns

"ETIRER"

getcorner

Pauses for user input of a rectangle's second corner

(getcorner
pt [msg]

)

94 | Chapter 1 AutoLISP Functions

The getcorner function takes a base point argument, based on the current
UCS, and draws a rectangle from that point as the user moves the crosshairs
on the screen.

The user cannot enter another AutoLISP expression in response to a getcorner

request.

Arguments

pt A point to be used as the base point.

msg A string to be displayed to prompt the user.

Return Values

The getcorner function returns a point in the current UCS, similar to getpoint.
If the user supplies a 3D point, its Z coordinate is ignored. The current elevation
is used as the Z coordinate.

Examples
Command: (getcorner '(7.64935 6.02964 0.0))
(17.2066 1.47628 0.0)
Command: (getcorner '(7.64935 6.02964 0.0) "Pick a corner")
Pick a corner(15.9584 2.40119 0.0)

See also:

The initget (page 118) function. The getxxx Functions in the AutoLISP
Developer's Guide.

getdist

Pauses for user input of a distance

(getdist
[pt] [msg]

)

The user can specify the distance by selecting two points, or by specifying just
the second point, if a base point is provided. The user can also specify a
distance by entering a number in the AutoCAD for Mac current distance units
format. Although the current distance units format might be in feet and inches
(architectural), the getdist function always returns the distance as a real.

AutoLISP Functions | 95

The getdist function draws a rubber-band line from the first point to the
current crosshairs position to help the user visualize the distance.

The user cannot enter another AutoLISP expression in response to a getdist

request.

Arguments

pt A 2D or 3D point to be used as the base point in the current UCS. If pt is
provided, the user is prompted for the second point.

msg A string to be displayed to prompt the user. If no string is supplied,
AutoCAD for Mac does not display a message.

Return Values

A real number. If a 3D point is provided, the returned value is a 3D distance.
However, setting the 64 bit of the initget function instructs getdist to ignore
the Z component of 3D points and to return a 2D distance.

Examples

(setq dist (getdist))
(setq dist (getdist '(1.0 3.5)))
(setq dist (getdist "How far "))
(setq dist (getdist '(1.0 3.5) "How far? "))

See also:

The initget (page 118) function. The getxxx Functions in the AutoLISP
Developer's Guide.

getenv

Returns the string value assigned to a system environment variable

(getenv
variable-name

)

Arguments

variable-name A string specifying the name of the variable to be read.
Environment variable names must be spelled and cased exactly as they are
stored in the system registry.

96 | Chapter 1 AutoLISP Functions

Return Values

A string representing the value assigned to the specified system variable. If
the variable does not exist, getenv returns nil.

Examples

Assume the system environment variable ACAD is set to /acad/support and there
is no variable named NOSUCH.
Command: (getenv "ACAD")
"/acad/support"
Command: (getenv "NOSUCH")
nil

Assume that the MaxArray environment variable is set to 10000:
Command: (getenv "MaxArray")
"10000"

See also:

The setenv (page 174)function.

getfiled

Prompts the user for a file name with the standard AutoCAD for Mac file dialog
box, and returns that file name

(getfiled
title default ext flags

)

The getfiled function displays a dialog box containing a list of available files
of a specified extension type. You can use this dialog box to browse through
different drives and directories, select an existing file, or specify the name of
a new file.

Arguments

title A string specifying the dialog box label.

default A default file name to use; can be a null string ("").

ext The default file name extension. If ext is passed as a null string (""), it
defaults to * (all file types).

AutoLISP Functions | 97

If the file type dwg is included in the ext argument, the getfiled function
displays an image preview in the dialog box.

flags An integer value (a bit-coded field) that controls the behavior of the
dialog box. To set more than one condition at a time, add the values together
to create a flags value between 0 and 15. The following flags arguments are
recognized by getfiled:

1 (bit 0) Prompt for the name of a new file to create. Do not set this bit when
you prompt for the name of an existing file to open. In the latter case, if the
user enters the name of a file that doesn't exist, the dialog box displays an
error message at the bottom of the box.

If this bit is set and the user chooses a file that already exists, AutoCAD for
Mac displays an alert box and offers the choice of proceeding with or canceling
the operation.

4 (bit 2) Let the user enter an arbitrary file name extension, or no extension
at all.

If this bit is not set, getfiled accepts only the extension specified in the ext
argument and appends this extension to the file name if the user doesn't enter
it in the File text box.

8 (bit 3) If this bit is set and bit 0 is not set, getfiled performs a library search
for the file name entered. If it finds the file and its directory in the library
search path, it strips the path and returns only the file name. (It does not strip
the path name if it finds that a file of the same name is in a different directory.)

If this bit is not set, getfiled returns the entire file name, including the path
name.

Set this bit if you use the dialog box to open an existing file whose name you
want to save in the drawing (or other database).

16 (bit 4) If this bit is set, or if the default argument ends with a path delimiter,
the argument is interpreted as a path name only. The getfiled function assumes
that there is no default file name. It displays the path in the Look in: line and
leaves the File name box blank.

32 (bit 5) If this bit is set and bit 0 is set (indicating that a new file is being
specified), users will not be warned if they are about to overwrite an existing
file. The alert box to warn users that a file of the same name already exists
will not be displayed; the old file will just be replaced.

64 (bit 6) Do not transfer the remote file if the user specifies a URL.

128 (bit 7) Do not allow URLs at all.

Return Values

98 | Chapter 1 AutoLISP Functions

If the dialog box obtains a file name from the user, getfiled returns a string
that specifies the file name; otherwise, it returns nil.

Examples

The following call to getfiled displays the Select a Lisp File dialog box:

(getfiled "Select a Lisp File"
"/Applications/Autodesk/<AutoCAD 2012/AutoCAD.app/" "lsp"
8)

getint

Pauses for user input of an integer, and returns that integer

(getint
[msg]

)

Values passed to getint can range from -32,768 to +32,767. If the user enters
something other than an integer, getint displays the message, “Requires an
integer value,” and allows the user to try again. The user cannot enter another
AutoLISP expression as the response to a getint request.

Arguments

msg A string to be displayed to prompt the user; if omitted, no message is
displayed.

Return Values

The integer specified by the user; otherwise nil, if the user presses ENTER
without entering an integer.

Examples
Command: (setq num (getint))
15
15
Command: (setq num (getint "Enter a number:"))
Enter a number: 25
25
Command: (setq num (getint))
15.0

AutoLISP Functions | 99

Requires an integer value.
15
15

See also:

The initget (page 118) function. The getxxx Functions in the AutoLISP
Developer's Guide.

getkword

Pauses for user input of a keyword, and returns that keyword

(getkword
[msg]

)

Valid keywords are set prior to the getkword call with the initget function.
The user cannot enter another AutoLISP expression as the response to a
getkword request.

Arguments

msg A string to be displayed to prompt the user; if omitted, getkword does
not display a prompting message.

Return Values

A string representing the keyword entered by the user; otherwise nil, if the
user presses ENTER without typing a keyword. The function also returns nil
if it was not preceded by a call to initget to establish one or more keywords.

If the user enters a value that is not a valid keyword, getkword displays a
warning message and prompts the user to try again.

Examples

The following example shows an initial call to initget that sets up a list of
keywords (Yes and No) and disallows null input (bits value equal to 1) to the
getkword call that follows:
Command: (initget 1 "Yes No")
nil
Command: (setq x (getkword "Are you sure? (Yes or No) "))
Are you sure? (Yes or No) yes

100 | Chapter 1 AutoLISP Functions

"Yes"

The following sequence illustrates what happens if the user enters invalid data
in response to getkword:
Command: (initget 1 "Yes No")
nil
Command: (setq x (getkword "Are you sure? (Yes or No) "))
Are you sure? (Yes or No) Maybe
Invalid option keyword.
Are you sure? (Yes or No) yes
"Yes"

The user's response was not one of the keywords defined by the preceding
initget, so getkword issued an error message and then prompted the user
again with the string supplied in the msg argument.

See also:

The initget (page 118) function. The getxxx Functions in the AutoLISP
Developer's Guide.

getorient

Pauses for user input of an angle, and returns that angle in radians

(getorient
[pt] [msg]

)

The getorient function measures angles with the zero-radian direction to the
right (east) and angles that are increasing in the counterclockwise direction.
The angle input by the user is based on the current settings of ANGDIR and
ANGBASE, but once an angle is provided, it is measured in a counterclockwise
direction, with zero radians being to the right (ignoring ANGDIR and
ANGBASE). Therefore, some conversion must take place if you select a different
zero-degree base or a different direction for increasing angles by using the
UNITS command or the ANGBASE and ANGDIR system variables in the
Command Reference.

Use getangle when you need a rotation amount (a relative angle). Use
getorient to obtain an orientation (an absolute angle).

AutoLISP Functions | 101

The user cannot enter another AutoLISP expression as the response to a
getorient request.

Arguments

pt A 2D base point in the current UCS.

The pt argument, if specified, is assumed to be the first of two points, so that
the user can show AutoLISP the angle by pointing to one other point. You
can supply a 3D base point, but the angle is always measured in the current
construction plane.

msg A string to be displayed to prompt the user.

Return Values

The angle specified by the user, in radians, with respect to the current
construction plane.

Examples
Command: (setq pt1 (getpoint "Pick point: "))
(4.55028 5.84722 0.0)
Command: (getorient pt1 "Pick point: ")
5.61582

getpoint

Pauses for user input of a point, and returns that point

(getpoint
[pt] [msg]

)

The user can specify a point by pointing or by entering a coordinate in the
current units format. If the pt argument is present, AutoCAD for Mac draws
a rubber-band line from that point to the current crosshairs position.

The user cannot enter another AutoLISP expression in response to a getpoint

request.

Arguments

pt A 2D or 3D base point in the current UCS.

Note that getpoint will accept a single integer or real number as the pt
argument, and use the AutoCAD for Mac direct distance entry mechanism to
determine a point. This mechanism uses the value of the LASTPOINT system

102 | Chapter 1 AutoLISP Functions

variable in the Command Reference as the starting point, the pt input as the
distance, and the current cursor location as the direction from LASTPOINT.
The result is a point that is the specified number of units away from
LASTPOINT in the direction of the current cursor location.

msg A string to be displayed to prompt the user.

Return Values

A 3D point, expressed in terms of the current UCS.

Examples

(setq p (getpoint))
(setq p (getpoint "Where? "))
(setq p (getpoint '(1.5 2.0) "Second point: "))

See also:

The getcorner (page 94) and initget (page 118) functions. The getxxx
Functions in the AutoLISP Developer's Guide.

getpropertyvalue

Returns the current value of an entity’s property.

(getpropertyvalue
ename propertyname [or collectionName index name]

)

Arguments

ename Name of the entity being queried. The ename can refer to either a
graphical or a non-graphical entity.

propertyname Name of the property being queried. For a list of all the valid
property names of a given object, use dumpallproperties.

collectionName If the object is a collection object, the Collection name is passed
here.

index The collection index being queried.

name The name of the property within the collection being queried.

Return Values

AutoLISP Functions | 103

The value of the entity’s property.

Examples

The following example demonstrates how to get the current radius value of
a circle.

Command: (command "_circle" "2,2" 2)
nil

Command: (getpropertyvalue (entlast) "radius")
2.0

See also:

DumpAllProperties (page 64)

IsPropertyReadOnly (page 123)

SetPropertyValue (page 175)

getreal

Pauses for user input of a real number, and returns that real number

(getreal
[msg]

)

The user cannot enter another AutoLISP expression as the response to a getreal

request.

Arguments

msg A string to be displayed to prompt the user.

Return Values

The real number entered by the user.

Examples

(setq val (getreal))
(setq val (getreal "Scale factor: "))

104 | Chapter 1 AutoLISP Functions

See also:

The initget (page 118) function. The getxxx Functions in the AutoLISP
Developer's Guide.

getstring

Pauses for user input of a string, and returns that string

(getstring
[cr]

[msg]

)

The user cannot enter another AutoLISP expression as the response to a
getstring request.

Arguments

cr If supplied and not nil, this argument indicates that users can include
blanks in their input string (and must terminate the string by pressing Enter).
Otherwise, the input string is terminated by entering a space or pressing Enter.

msg A string to be displayed to prompt the user.

Return Values

The string entered by the user; otherwise nil, if the user pressed Enter without
typing a string.

If the string is longer than 132 characters, getstring returns only the first 132
characters of the string. If the input string contains the backslash character
(\), getstring converts it to two backslash characters (\\). This allows you to
use returned values containing file name paths in other functions.

Examples
Command: (setq s (getstring "What's your first name? "))
What's your first name? Gary
"Gary"
Command: (setq s (getstring T "What's your full name? "))
What's your full name? Gary Indiana Jones
"Gary Indiana Jones"
Command: (setq s (getstring T "Enter filename: "))
Enter filename: /myutilities/support/xyz.txt

AutoLISP Functions | 105

See also:

The initget (page 118) function. The getxxx Functions in the AutoLISP
Developer's Guide.

getvar

Retrieves the value of an AutoCAD for Mac system variable

(getvar
varname

)

Arguments

varname A string or symbol that names a system variable. See the Command
Reference for a list of current AutoCAD for Mac system variables.

Return Values

The value of the system variable; otherwise nil, if varname is not a valid system
variable.

Examples

Get the current value of the fillet radius:
Command: (getvar 'FILLETRAD)
0.25

See also:

The setvar (page 177) function.

graphscr

Displays the AutoCAD for Mac graphics screen

NOTE This function is supported on Mac OS, but does not affect AutoCAD for
Mac.

(graphscr)

106 | Chapter 1 AutoLISP Functions

This function is equivalent to the GRAPHSCR command in the Command
Reference or pressing the Flip Screen function key. The textscr function is the
complement of graphscr.

Returns

nil

See also:

The textscr (page 206) function.

grclear

Clears the current viewport (obsolete function)

(grclear)

Returns

nil

grdraw

Draws a vector between two points, in the current viewport

(grdraw
from to color [highlight]

)

Arguments

from 2D or 3D points (lists of two or three reals) specifying one endpoint of
the vector in terms of the current UCS. AutoCAD for Mac clips the vector to
fit the screen.

to 2D or 3D points (lists of two or three reals) specifying the other endpoint
of the vector in terms of the current UCS. AutoCAD for Mac clips the vector
to fit the screen.

AutoLISP Functions | 107

color An integer identifying the color used to draw the vector. A -1 signifies
XOR ink, which complements anything it draws over and which erases itself
when overdrawn.

highlight An integer, other than zero, indicating that the vector is to be drawn
using the default highlighting method of the display device (usually dashed).

If highlight is omitted or is zero, grdraw uses the normal display mode.

Return Values

nil

See also:

The grvecs (page 112) function for a routine that draws multiple vectors.

grread

Reads values from any of the AutoCAD for Mac input devices

(grread
[track] [allkeys [curtype]]

)

Only specialized AutoLISP routines need this function. Most input to AutoLISP
should be obtained through the various getxxx functions.

Arguments

track If supplied and not nil, this argument enables the return of coordinates
from a pointing device as it is moved.

allkeys An integer representing a code that tells grread what functions to
perform. The allkeys bit code values can be added together for combined
functionality. The following values can be specified:

1 (bit 0) Return drag mode coordinates. If this bit is set and the user moves the
pointing device instead of selecting a button or pressing a key, grread returns
a list where the first member is a type 5 and the second member is the (X,Y)
coordinates of the current pointing device (mouse or digitizer) location. This
is how AutoCAD for Mac implements dragging.

2 (bit 1) Return all key values, including function and cursor key codes, and
don't move the cursor when the user presses a cursor key.

108 | Chapter 1 AutoLISP Functions

4 (bit 2) Use the value passed in the curtype argument to control the cursor
display.

8 (bit 3) Don't display the error: console break message when the user presses
Esc.

curtype An integer indicating the type of cursor to be displayed. The allkeys
value for bit 2 must be set for the curtype values to take effect. The curtype
argument affects only the cursor type during the current grread function call.
You can specify one of the following values for curtype:

0 Display the normal crosshairs.

1 Do not display a cursor (no crosshairs).

2 Display the object-selection “target” cursor.

Return Values

The grread function returns a list whose first element is a code specifying the
type of input. The second element of the list is either an integer or a point,
depending on the type of input. The return values are listed in the following
table:

grread return values

Second elementFirst element

DescriptionValueType of inputValue

Character codevariesKeyboard input2

Point coordinates3D pointSelected point3

Drag mode coordinate3D pointPointing device (returned
only if tracking is enabled)

5

BUTTONS1 menu but-
ton no.

0 to 999
1000 to 1999

BUTTONS menu item6

BUTTONS2 menu but-
ton no.

2000 to 2999
3000 to 3999

BUTTONS3 menu but-
ton no.
BUTTONS4 menu but-
ton no.

AutoLISP Functions | 109

grread return values

Second elementFirst element

DescriptionValueType of inputValue

AUX1 menu button no.0 to 999AUX menu item11
AUX2 menu button no.1000 to 1999
AUX3 menu button no.2000 to 2999
AUX4 menu button no.3000 to 3999

Point coordinates3D pointPointer button (follows a
type 6 or type 11 return)

12

Handling User Input with grread

Entering Esc while a grread is active aborts the AutoLISP program with a
keyboard break (unless the allkeys argument has disallowed this). Any other
input is passed directly to grread, giving the application complete control
over the input devices.

If the user presses the pointer button within a screen menu or pull-down menu
box, grread returns a type 6 or type 11 code, but in a subsequent call, it does
not return a type 12 code: the type 12 code follows type 6 or type 11 only
when the pointer button is pressed while it is in the drawing area.

It is important to clear the code 12 data from the buffer before attempting
another operation with a pointer button or an auxiliary button. To accomplish
this, perform a nested grread like this:

(setq code_12 (grread (setq code (grread))))

This sequence captures the value of the code 12 list as streaming input from
the device.

grtext

Writes text to the status line or to screen menu areas

NOTE This function is supported on Mac OS, but does not affect AutoCAD for
Mac.

110 | Chapter 1 AutoLISP Functions

(grtext
[box text [highlight]]

)

This function displays the supplied text in the menu area; it does not change
the underlying menu item. The grtext function can be called with no
arguments to restore all text areas to their standard values.

Arguments

box An integer specifying the location in which to write the text.

text A string that specifies the text to be written to the screen menu or status
line location. The text argument is truncated if it is too long to fit in the
available area.

highlight An integer that selects or deselects a screen menu location.

If called without arguments, grtext restores all text areas to their standard
values. If called with only one argument, grtext results in an error.

Return Values

The string passed in the text argument, if successful, and nil if unsuccessful
or no arguments are supplied.

Screen Menu Area

Setting box to a positive or zero value specifies a screen menu location. Valid
box values range from 0 to the highest-numbered screen menu box minus 1.
The SCREENBOXES system variable in the Command Reference reports the
maximum number of screen menu boxes. If the highlight argument is supplied
as a positive integer, grtext highlights the text in the designated box.
Highlighting a box automatically dehighlights any other box already
highlighted. If highlight is zero, the menu item is dehighlighted. If highlight is
a negative number, it is ignored. On some platforms, the text must first be
written without the highlight argument and then must be highlighted.
Highlighting of a screen menu location works only when the cursor is not in
that area.

Status Line Area

If grtext is called with a box value of -1, it writes the text into the mode status
line area. The length of the mode status line differs from display to display
(most allow at least 40 characters). The following code uses the $(linelen)

DIESEL expression to report the length of the mode status area.

AutoLISP Functions | 111

(setq modelen (menucmd "M=$(linelen)"))

If a box value of -2 is used, grtext writes the text into the coordinate status
line area. If coordinate tracking is turned on, values written into this field are
overwritten as soon as the pointer sends another set of coordinates. For both
-1 and -2 box values, the highlight argument is ignored.

grvecs

Draws multiple vectors in the drawing area

(grvecs
vlist [trans]

)

Arguments

vlist A vector list is comprosed of a series of optional color integers and two
point lists. See below for details on how to format vlist.

trans A transformation matrix used to change the location or proportion of
the vectors defined in your vector list. This matrix is a list of four lists of four
real numbers.

Return Values

nil

Vector List Format

The format for vlist is as follows:

([color1] from1 to1 [color2] from2 to2 ...)

The color value applies to all succeeding vectors until vlist specifies another
color. AutoCAD for Mac colors are in the range 0-255. If the color value is
greater than 255, succeeding vectors are drawn in XOR ink, which complements
anything it draws over and which erases itself when overdrawn. If the color
value is less than zero, the vector is highlighted. Highlighting depends on the
display device. Most display devices indicate highlighting by a dashed line,
but some indicate it by using a distinctive color.

112 | Chapter 1 AutoLISP Functions

A pair of point lists, from and to, specify the endpoints of the vectors, expressed
in the current UCS. These can be 2D or 3D points. You must pass these points
as pairs—two successive point lists—or the grvecs call will fail.

AutoCAD for Mac clips the vectors as required to fit on the screen.

Examples

The following code draws five vertical lines in the drawing area, each a different
color:

(grvecs '(1 (1 2)(1 5)
Draws a red line from (

1,2
) to (

1,5
)

2 (2 2)(2 5)
Draws a yellow line from (

2,2
) to (

2,5
)

3 (3 2)(3 5)
Draws a green line from (

3,2
) to (

3,5
)

4 (4 2)(4 5)
Draws a cyan line from (

4,2
) to (

4,5
)

5 (5 2)(5 5)
Draws a blue line from (

AutoLISP Functions | 113

5,2
) to (

5,5
)

))

The following matrix represents a uniform scale of 1.0 and a translation of
5.0,5.0,0.0. If this matrix is applied to the preceding list of vectors, they will
be offset by 5.0,5.0,0.0.

'((1.0 0.0 0.0 5.0)
(0.0 1.0 0.0 5.0)
(0.0 0.0 1.0 0.0)
(0.0 0.0 0.0 1.0)

)

See also:

The nentselp (page 151) function for more information on transformation
matrixes and the grdraw (page 107) function for a routine that draws a
vector between two points.

H Functions

handent

Returns an object (entity) name based on its handle

(handent
handle

)

The handent function returns the entity name of both graphic and nongraphic
entities.

Arguments

handle A string identifying an entity handle.

Return Values

114 | Chapter 1 AutoLISP Functions

If successful, handent returns the entity name associated with handle in the
current editing session. If handent is passed an invalid handle or a handle
not used by any entity in the current drawing, it returns nil.

The handent function returns entities that have been deleted during the
current editing session. You can undelete them with the entdel function.

An entity's name can change from one editing session to the next, but an
entity's handle remains constant.

Examples
Command: (handent "5A2")
<Entity name: 60004722>

Used with the same drawing but in another editing session, the same call
might return a different entity name. Once the entity name is obtained, you
can use it to manipulate the entity with any of the entity-related functions.

See also:

The entdel (page 67), entget (page 68), entlast (page 69), entmake (page
70), entmakex (page 72), entmod (page 73), <Undefined Cross-Reference>
(page 75), entsel (page 77), and entupd (page 78) functions.

I Functions

if

Conditionally evaluates expressions

(if
testexpr thenexpr [elseexpr]

)

Arguments

testexpr Expression to be tested.

thenexpr Expression evaluated if testexpr is not nil.

elseexpr Expression evaluated if testexpr is nil.

Return Values

AutoLISP Functions | 115

The if function returns the value of the selected expression. If elseexpr is missing
and testexpr is nil, then it returns nil.

Examples
Command: (if (= 1 3) "YES!!" "no.")
"no."
Command: (if (= 2 (+ 1 1)) "YES!!")
"YES!!"
Command: (if (= 2 (+ 3 4)) "YES!!")
nil

See also:

The progn (page 161) function.

initcommandversion

Forces the next command to run with the specified version.

(initcommandversion [version])

This function makes it possible to force a specific behavior for a supported
command regardless of how it is being run. This only affects commands that
have been updated to support a command version. In such commands, a test
for an initialized command version replaces the legacy test for whether the
command is being run from LISP or a script. When a supported command is
being run manually, the default version is 2 (or the latest version). When a
command is being run from automation, the default version is 1.

Arguments

version This argument specifies the version of the command to be used. If this
argument is not present, the next use (and next use only) of a supported
command will initialize to the latest version.

Return Values

T

Examples

Initializing a specific command version may affect each supported command
differently. For example, here is the FILLET command with and without an
initialized version:
Command: FILLET

116 | Chapter 1 AutoLISP Functions

Current settings: Mode = TRIM, Radius = 0.0000
Select first object or [Undo/Polyline/Radius/Trim/Multiple]:
Cancel

Command: (INITCOMMANDVERSION 1)

Command: FILLET
Current settings: Mode = TRIM, Radius = 0.0000
Select first object or [uNdo/Polyline/Radius/Trim/mUltiple]:
Cancel

Another typical example is the COLOR command. Run normally, COLOR
displays the Select Color dialog; but by running (initcommandversion 1) before
the COLOR command, it is forced to prompt from color from the command
line.

initdia

Forces the display of the next command's dialog box

(initdia
[dialogflag]

)

Currently, the following commands make use of the initdia function: ATTDEF,
ATTEXT, BLOCK, COLOR, HATCH, IMAGE, IMAGEADJUST, INSERT, LAYER,
LINETYPE, MTEXT, PLOT, RENAME, STYLE, and VIEW.

Arguments

dialogflag An integer. If this argument is not present or is present and nonzero,
the next use (and next use only) of a command will display that command's
dialog box rather than its command line prompts.

If dialogflag is zero, any previous call to this function is cleared, restoring the
default behavior of presenting the command line interface.

Return Values

nil

Examples

Issue the PLOT command without calling initdia first:
Command: (command "_.PLOT")
plot

AutoLISP Functions | 117

Detailed plot configuration? [Yes/No] <No>: nil
Detailed plot configuration? [Yes/No] <No>:

AutoCAD for Mac prompts for user input in the command window.

Use the following sequence of function calls to make AutoCAD for Mac display
the Plot dialog box:

(initdia)
(command "_.PLOT")

initget

Establishes keywords for use by the next user-input function call

(initget
[bits] [string]

)

The functions that honor keywords are getint, getreal, getdist, getangle,
getorient, getpoint, getcorner, getkword, entsel, nentsel, and nentselp. The
getstring function is the only user-input function that does not honor
keywords.

The keywords are checked by the next user-input function call when the user
does not enter the expected type of input (for example, a point to getpoint).
If the user input matches a keyword from the list, thefunction returns that
keyword as a string result. The application can test for the keywords and
perform the action associated with each one. If the user input is not an
expected type and does not match a keyword, AutoCAD for Mac asks the user
to try again. The initget bit values and keywords apply only to the next
user-input function call.

If initget sets a control bit and the application calls a user-input function for
which the bit has no meaning, the bit is ignored.

If the user input fails one or more of the specified conditions (as in a zero
value when zero values are not allowed), AutoCAD for Mac displays a message
and asks the user to try again.

Arguments

bits A bit-coded integer that allows or disallows certain types of user input.
The bits can be added together in any combination to form a value between

118 | Chapter 1 AutoLISP Functions

0 and 255. If no bits argument is supplied, zero (no conditions) is assumed.
The bit values are as follows:

1 (bit 0) Prevents the user from responding to the request by entering only
ENTER.

2 (bit 1) Prevents the user from responding to the request by entering zero.

4 (bit 2) Prevents the user from responding to the request by entering a
negative value.

8 (bit 3) Allows the user to enter a point outside the current drawing limits.
This condition applies to the next user-input function even if the AutoCAD
for Mac system variable LIMCHECK is currently set.

16 (bit 4) (Not currently used.)

32 (bit 5) Uses dashed lines when drawing a rubber-band line or box. For those
functions with which the user can specify a point by selecting a location in
the drawing area, this bit value causes the rubber-band line or box to be dashed
instead of solid. (Some display drivers use a distinctive color instead of dashed
lines.) If the system variable POPUPS is 0, AutoCAD for Mac ignores this bit.

64 (bit 6) Prohibits input of a Z coordinate to the getdist function; lets an
application ensure that this function returns a 2D distance.

128 (bit 7) Allows arbitrary input as if it is a keyword, first honoring any other
control bits and listed keywords. This bit takes precedence over bit 0; if bits 7
and 0 are set and the user presses ENTER, a null string is returned.

256 (bit 8) Give direct distance input precedence over arbitrary input. For
external applications, arbitrary input is given precedence over direct distance
input by default. Set this bit if you wish to force AutoCAD to evaluate user
input as direct distance input. Note that legal point input from the keyboard
always takes precedence over either direct distance or arbitrary input.

512 (bit 9) If set before a call to getpoint or getcorner, a temporary UCS will
be established when the cursor crosses over the edge of a planar face of a solid.
The temporary UCS is reset when the cursor moves off of a face. It is
dynamically re-established when the cursor moves over a different face. After
the point is acquired, the dynamic UCS is reset to the current UCS. This
functionality is not enabled for non-planar faces such as the side of a cylinder.

1024 (bit 10) When calling getdist, getangle, getorient, getpoint, or
getcorner, you may not want the distance, angle, orient, point, or corner to
be influenced by ortho, polar, or otracking in the Z direction. Setting this bit
before calls to any of these functions will temporarily disable ortho, polar,
and otracking in the Z direction. This is useful when you create 2D entities
such as PLINE, ARC, or CIRCLE, or when you use the ARRAY command, which
creates only a 2D array. In 2D-only commands it can be confusing and

AutoLISP Functions | 119

error-prone to allow 3D points to be entered using ortho Z, polar Z, or otrack
Z.

NOTE Future versions of AutoLISP may use additional initget control bits, so
avoid setting bits that are not listed here.

string A string representing a series of keywords. See “Keyword Specifications”
for information on defining keywords.

Return Values

nil

Function Applicable Control Bits

The special control values are honored only by those getxxx functions for
which they make sense, as indicated in the following table:

User-input functions and applicable control bits

Control bits values

Uses
dashes
(32)

No
limits
(8)

No
negative
(4)

No
zero
(2)

No
null
(1)

Honors
key
words

Function

XXXXgetint

XXXXgetreal

XXXXXgetdist

XXXXgetangle

XXXXgetorient

XXXXgetpoint

XXXXgetcorner

XXgetkword

Xentsel

120 | Chapter 1 AutoLISP Functions

User-input functions and applicable control bits

Control bits values

Uses
dashes
(32)

No
limits
(8)

No
negative
(4)

No
zero
(2)

No
null
(1)

Honors
key
words

Function

Xnentsel

Xnentselp

User-input functions and applicable control bits (continued)

Control bits values

Disable
Z-tracking
(1024)

UCS face
tracking
(512)

Direct
distance
(256)

Arbitrary
input
(128)

2D
distance
(64)

Function

Xgetint

Xgetreal

XXXXgetdist

XXXgetangle

XXXgetorient

XXXXgetpoint

XXXXgetcorner

Xgetkword

entsel

nentsel

AutoLISP Functions | 121

User-input functions and applicable control bits (continued)

Control bits values

Disable
Z-tracking
(1024)

UCS face
tracking
(512)

Direct
distance
(256)

Arbitrary
input
(128)

2D
distance
(64)

Function

nentselp

Keyword Specifications

The string argument is interpreted according to the following rules:

1 Each keyword is separated from the following keyword by one or more
spaces. For example, "Width Height Depth" defines three keywords.

2 Each keyword can contain only letters, numbers, and hyphens (-).

There are two methods for abbreviating keywords:
■ The required portion of the keyword is specified in uppercase characters,

and the remainder of the keyword is specified in lowercase characters. The
uppercase abbreviation can be anywhere in the keyword (for example,
"LType", "eXit", or "toP").

■ The entire keyword is specified in uppercase characters, and it is followed
immediately by a comma, which is followed by the required characters
(for example, "LTYPE,LT"). The keyword characters in this case must include
the first letter of the keyword, which means that "EXIT,X" is not valid.

The two brief examples, "LType" and "LTYPE,LT", are equivalent: if the user
types LT (in either uppercase or lowercase letters), this is sufficient to identify
the keyword. The user can enter characters that follow the required portion
of the keyword, provided they don't conflict with the specification. In the
example, the user could also enter LTY or LTYP, but L would not be sufficient.

If string shows the keyword entirely in uppercase or lowercase characters with
no comma followed by a required part, AutoCAD for Mac recognizes the
keyword only if the user enters all of it.

The initget function provides support for localized keywords. The following
syntax for the keyword string allows input of the localized keyword while it
returns the language independent keyword:

"

122 | Chapter 1 AutoLISP Functions

local1

local2

localn

_indep1

indep2

indepn

"

where local1 through localn are the localized keywords, and indep1 through
indepn are the language-independent keywords.

There must always be the same number of localized keywords as
language-independent keywords, and the first language-independent keyword
is prefixed by an underscore as shown in the following example:

(initget "Abc Def _Ghi Jkl")
(getkword "\nEnter an option (Abc/Def): ")

Entering A returns Ghi and entering _J returns Jkl.

See also:

The entsel (page 77), getangle (page 91), getcorner (page 94), getdist (page
95), getint (page 99), getkword (page 100), getorient (page 101), getpoint
(page 102), getreal (page 104), getstring (page 105), nentsel (page 149), and
nentselp (page 151) functions. The Control of User-Input Function
Conditions topic in the AutoLISP Developer's Guide.

ispropertyreadonly

Returns the read-only state of an entity’s property.

(ispropertyreadonly
ename propertyname [or collectionName index name]

)

Arguments

ename Name of the entity being queried. The ename can refer to either a
graphical or a non-graphical entity.

propertyname Name of the property being queried. For a list of all the valid
property names of a given object, use dumpallproperties.

AutoLISP Functions | 123

collectionName If the object is a collection object, the Collection name is passed
here.

index The collection index being queried.

name The name of the property within the collection being queried.

Return Values

1 is returned when the property is read-only; otherwise, 0 is returned when
the property is writable.

Examples

The following example demonstrates how to check the read-only state of the
Radius and Area properties of a circle.

Command: (setq e1 (car (entsel "\nSelect an arc or circle: ")))
<Entity name: 10e2e4ba0>
Command: (ispropertyreadonly e1 "Radius")
0

Command: (ispropertyreadonly e1 "Area")
1

See also:

DumpAllProperties (page 64)

GetPropertyValue (page 103)

SetPropertyValue (page 175)

inters

Finds the intersection of two lines

(inters
pt1 pt2 pt3 pt4 [onseg]

)

All points are expressed in terms of the current UCS. If all four point arguments
are 3D, inters checks for 3D intersection. If any of the points are 2D, inters

projects the lines onto the current construction plane and checks only for 2D
intersection.

124 | Chapter 1 AutoLISP Functions

Arguments

pt1 One endpoint of the first line.

pt2 The other endpoint of the first line.

pt3 One endpoint of the second line.

pt4 The other endpoint of the second line.

onseg If specified as nil, the lines defined by the four pt arguments are
considered infinite in length. If the onseg argument is omitted or is not nil,
the intersection point must lie on both lines or inters returns nil.

Return Values

If the onseg argument is present and is nil, inters returns the point where the
lines intersect, even if that point is off the end of one or both of the lines. If
the onseg argument is omitted or is not nil, the intersection point must lie
on both lines or inters returns nil. The inters function returns nil if the two
lines do not intersect.

Examples

(setq a '(1.0 1.0) b '(9.0 9.0))
(setq c '(4.0 1.0) d '(4.0 2.0))

Command: (inters a b c d)
nil
Command: (inters a b c d T)
nil
Command: (inters a b c d nil)
(4.0 4.0)

itoa

Returns the conversion of an integer into a string

(itoa
int

)

Arguments

int An integer.

AutoLISP Functions | 125

Return Values

A string derived from int.

Examples
Command: (itoa 33)
"33"
Command: (itoa -17)
"-17"

See also:

The atoi (page 31) function.

L Functions

lambda

Defines an anonymous function

(lambda
arguments expr

...)

Use the lambda function when the overhead of defining a new function is
not justified. It also makes your intention more apparent by laying out the
function at the spot where it is to be used. This function returns the value of
its last expr, and is often used in conjunction with apply and/or mapcar to
perform a function on a list.

Arguments

arguments Arguments passed to an expression.

expr An AutoLISP expression.

Return Values

Value of the last expr.

Examples

 (apply '(lambda (x y z)

 (* x (- y z))

126 | Chapter 1 AutoLISP Functions

)

 '(5 20 14)

)

30
(setq counter 0)

(mapcar '(lambda (x)

 (setq counter (1+ counter))

 (* x 5)

)

 '(2 4 -6 10.2)

)

0 (10 20 -30 51.0)

last

Returns the last element in a list

(last
lst

)

Arguments

lst A list.

Return Values

An atom or a list.

Examples
Command: (last '(a b c d e))
E
Command: (last '(a b c (d e)))
(D E)

layoutlist

Returns a list of all paper space layouts in the current drawing

AutoLISP Functions | 127

(layoutlist)

Return Values

A list of strings.

Examples
Command: (layoutlist)
("Layout1" "Layout2")

layerstate-addlayers

Adds or updates a series of layers to a layer state

(layerstate-addlayers
layerstatename (list layerstate layername state color
linetype lineweight plotstyle)

)

Arguments

layerstatename A string specifying the name of the layer state to be updated.

layername A string specifying the name of the layer to be added or updated.

state An integer sum designating properties in the layer to be set.

1- Turns the layer off

2- Freeze the layer

4- Lock the layer

8- Flag the layer as No Plot

16- Set the layer as being frozen in new viewports

A nil value uses defaults of on, thawed, unlocked, plottable, and thawed in
new viewports.

color A dotted pair specifying the layers color type and value, e.g. (62 .
ColorIndex), (420 . TrueColor), or (430 . "colorbook$colorname").

linetype A string specifying the name of the layer linetype. The linetype must
already be loaded in the drawing or the default of "Continuous" will be used.
A nil value sets the layer linetype to "Continuous."

lineweight An integer corresponding to a valid lineweight, i.e., 35 = .35, 211 =
2.11. A nil value sets the layer lineweight to "Default."

128 | Chapter 1 AutoLISP Functions

plotstyle A string specifying the name of the layers plot style. The plotstyle
name must already be loaded in the drawing or the default of "Normal" will
be used. A nil value sets the layer plotstyle to "Normal." If the drawing is in
color dependent mode, this setting is ignored.

Return Values

T if successful; otherwise nil

Examples

(layerstate-addlayers “myLayerState” (list “Walls” 4 '(62
. 45) “Divide” 35 “10% Screen”)
(list “Floors” 6 '(420 . 16235019) “Continuous” 40 “60%
Screen”)
(list “Ceiling” 0 '(430 . “RAL CLASSIC$RAL 1003”) “DOT”
nil nil)))
T

layerstate-compare

Compares a layerstate to the layers in the current drawing

(layerstate-compare
layerstatename viewport

)

Arguments

layerstatename A string specifying the name of the layer state compare.

viewport An ename (ads_name) of the viewport to be used in the compare. If
viewport is nil, the current viewport is used

Return Values

T if successful; otherwise nil

Examples

(layerstate-compare "myLayerState")

AutoLISP Functions | 129

layerstate-delete

Deletes a layer state

(layerstate-delete
layerstatename

)

Arguments

layerstatename A string specifying the name of the layer state to be deleted.

Return Values

T if the delete succeds; otherwise nil

Examples

(layerstate-delete “myLayerState”)
T

layerstate-export

Exports a layer state to a specified file

(layerstate-export
layerstatename filename

)

Arguments

layerstatename A string specifying the name of the layer to export.

filename A string specifying the name of the file to which the layer state should
be exported.

Return Values

T if the export is successful;nil otherwise.

Examples

(layerstate-export “myLayerState“ “/mylayerstate.las“)
T

130 | Chapter 1 AutoLISP Functions

layerstate-getlastrestored

Returns the name of the last restored layer state in the current drawing

(layerstate-getlastrestored)

Return Values

Returns the name of the last restored layer state in the current drawing.

Examples

(layerstate-getlastrestored)
"Foundation"

layerstate-getlayers

Returns the layers saved in a layer state

(layerstate-getlayers
layerstatename [invert]

)

Arguments

layerstatename A string specifying the name of the layer state to query for
layers.

invert If invert is omitted or nil, returns a list of the layers saved in the layer
state. If invert is T, it returns a list of the layers in the drawing that are not
saved in the layer state.

Return Values

A list of layer names. Returns nil if the layer state does not exist or contains
no layers.

Examples

(layerstate-getlayers “myLayerState“)
(“Layername1” “Layername2“)

AutoLISP Functions | 131

layerstate-getnames

Returns a list of the layer state names

(layerstate-getnames [includehidden] [includexref])

Arguments

includehidden If includehidden is T, the list will include the names of hidden
layer states. If omitted or nil, hidden layer states will be excluded.

includexref If includexref is nil, the list will exclude the names of xref layer
states. If omitted or T, xref layer states will be included

Return Values

Returns a list of the layer state names

Examples

(layerstate-getnames)
("First Floor" "Second Floor" "Foundation")

layerstate-has

Checks if a layer state is present

(layerstate-has
layerstatename

)

Arguments

layerstatename A string specifying the name of the layer state to be queried.

Return Values

T if the name exists; otherwise nil

Examples

(layerstate-has “myLayerState”)
T

132 | Chapter 1 AutoLISP Functions

layerstate-import

Imports a layer state from a specified file

(layerstate-import
filename

)

Arguments

filename A string specifying the name of the file from which to import a layer
state.

Return Values

T if the import is successful; nil otherwise.

Examples

(layerstate-import “/mylayerstate.las“)
T

layerstate-importfromdb

Imports a layer state from a specified drawing file

(layerstate-importfromdb
layerstatename filename

)

Arguments

layerstatename A string specifying the name of the layer state to be imported.

filename A string specifying the name of the file from which to import a layer
state.

Return Values

T if the import is successful; nil otherwise.

Examples

AutoLISP Functions | 133

(layerstate-importfromdb "mylayerstate" "/mydrawing.dwg")
T

layerstate-removelayers

Removes a list of layers from a layer state

(layerstate-removelayers
layerstatename (list layername layername layername ...)

)

Arguments

layerstatename A string specifying the name of the layer state to be updated.

layername A string specifying the name of the layer state to be removed.

Return Values

T if the remove is successful; otherwise nil

Examples

(layerstate-removelayers "myLayerState" (list "Walls"
"Elec1" "Foundation" "Plumbing"))
T

layerstate-rename

Renames a layer state

(layerstate-rename
oldlayerstatename newlayerstatename

)

Arguments

oldlayerstatename A string specifying the name of the layer state to be renamed.

newlayerstatename A string specifying the name of the layer state to be updated.

Return Values

134 | Chapter 1 AutoLISP Functions

T if the rename is successful; otherwise nil

Examples

(layerstate-rename “myLayerState“ “myNewLayerState“)
T

layerstate-restore

Restores a layer state into the current drawing

(layerstate-restore
layerstatename viewport [restoreflags]

)

Arguments

layerstatename A string specifying the name of the layer to restore.

viewport An ename (ads_name) of the viewport to which layerstatename
should be restored. If viewport is nil, the layer state is restored to model space.

restoreflags Optional integer sum affecting how the layer state is restored.

1- Turn off all layers not in the restored layer state

2- Freeze all layers not in the restored layer state

4- Restore the layer state properties as viewport overrides (requires viewport
to be not a nil value).

Return Values

nil if the layer state does not exist or contains no layers; otherwise, returns
a list of layer names.

Examples

(layerstate-restore “myLayerState“ viewportId 5)
(“Layername1” “Layername2“)

layerstate-save

Saves a layer state in the current drawing

AutoLISP Functions | 135

(layerstate-save
layerstatename mask viewport

)

Arguments

layerstatename A string specifying the name of the layer state to save.

mask An integer sum designating which properties in the layer state are to be
restored.

1- Restore the saved On or Off value

2- Restore the saved Frozen or Thawed value

4- Restore the saved Lock value

8- Restore the saved Plot or No Plot value

16- Restore the saved VPVSDFLT value

32- Restore the saved Color

64- Restore the saved LineType

128- Restore the saved LineWeight

viewport An ename (ads_name) of the viewport whose VPLAYER setting is to
be captured. If nil, the layer state will be saved without VPLAYER settings.

Return Values

T if the save is successful; otherwise nil

Examples

(layerstate-save “myLayerState“ 21 viewportId)
T
(layerstate-save “myLayerState“ nil nil)
nil

length

Returns an integer indicating the number of elements in a list

(length
lst

)

136 | Chapter 1 AutoLISP Functions

Arguments

lst A list.

Return Values

An integer.

Examples
Command: (length '(a b c d))
4
Command: (length '(a b (c d)))
3
Command: (length '())
0

See also:

The vl-list-length (page 238) function.

list

Takes any number of expressions and combines them into one list

(list
[expr

...
]

)

This function is frequently used to define a 2D or 3D point variable (a list of
two or three reals).

Arguments

expr An AutoLISP expression.

Return Values

A list, unless no expressions are supplied, in which case list returns nil.

Examples

(list 'a 'b 'c)

(A B C)

AutoLISP Functions | 137

(list 'a '(b c) 'd)

(A (B C) D)
(list 3.9 6.7)

(3.9 6.7)

As an alternative to using the list function, you can explicitly quote a list with
the quote function if there are no variables or undefined items in the list. The
single quote character (') is defined as the quote function.

'(3.9 6.7)

means the same as

(list 3.9 6.7)

This can be useful for creating association lists and defining points.

See also:

The quote (page 163), vl-list* (page 237), and vl-list-length (page 238)
functions.

listp

Verifies that an item is a list

(listp
item

)

Arguments

item Any atom, list, or expression.

Return Values

T if item is a list; otherwise nil. Because nil is both an atom and a list, the
listp function returns T when passed nil.

Examples
Command: (listp '(a b c))
T
Command: (listp 'a)
nil
Command: (listp 4.343)

138 | Chapter 1 AutoLISP Functions

nil
Command: (listp nil)
T
Command: (listp (setq v1 '(1 2 43)))
T

See also:

The vl-list* (page 237) and vl-list-length (page 238) functions.

load

Evaluates the AutoLISP expressions in a file

(load
filename [onfailure]

)

The load function can be used from within another AutoLISP function, or
even recursively (in the file being loaded).

Arguments

filename A string that represents the file name. If the filename argument does
not specify a file extension, load adds an extension to the name when
searching for a file to load. The function will try several extensions, if necessary,
in the following order:

As soon as load finds a match, it stops searching and loads the file.

The filename can include a directory prefix, as in /function/test1. If you don't
include a directory prefix in the filename string, load searches the AutoCAD
for Mac library path for the specified file. If the file is found anywhere on this
path, load then loads the file.

NOTE Use a single forward slash (/) or two backslashes (\\) as directory delimiters.

onfailure A value returned if load fails.

If the onfailure argument is a valid AutoLISP function, it is evaluated. In most
cases, the onfailure argument should be a string or an atom. This allows an
AutoLISP application calling load to take alternative action upon failure.

Return Values

AutoLISP Functions | 139

Unspecified, if successful. If load fails, it returns the value of onfailure; if
onfailure is not defined, failure results in an error message.

Examples

For the following examples, assume that file /fred/test1.lsp contains the
expressions

(defun MY-FUNC1 (x)
...

function body

...

) (defun MY-FUNC2 (x)
...

function body

...

and that no file named test2 with a .lsp or .fas extension exists:
Command: (load "/fred/test1")
MY-FUNC2
Command: (load "/fred/test1" "bad")
MY-FUNC2
Command: (load "test2" "bad")
"bad"
Command: (load "test2") causes an AutoLISP error

See also:

The defun (page 52) and vl-load-all (page 239) functions. The Symbol and
Function Handling topic in the AutoLISP Developer's Guide.

log

Returns the natural log of a number as a real number

(log
num

)

Arguments

140 | Chapter 1 AutoLISP Functions

num A positive number.

Return Values

A real number.

Examples
Command: (log 4.5)
1.50408
Command: (log 1.22)
0.198851

logand

Returns the result of the logical bitwise AND of a list of integers

(logand
[int int

...
]

)

Arguments

int An integer.

Return Values

An integer (0, if no arguments are supplied).

Examples
Command: (logand 7 15 3)
3
Command: (logand 2 3 15)
2
Command: (logand 8 3 4)
0

logior

Returns the result of the logical bitwise inclusive OR of a list of integers

AutoLISP Functions | 141

(logior
[int

int

...
]

)

Arguments

int An integer.

Return Values

An integer (0, if no arguments are supplied).

Examples
Command: (logior 1 2 4)
7
Command: (logior 9 3)
11

lsh

Returns the logical bitwise shift of an integer by a specified number of bits

(lsh
int

numbits

)

Arguments

int An integer.

numbits Number of bits to shift int.

If numbits is positive, int is shifted to the left; if numbits is negative, int is shifted
to the right. In either case, zero bits are shifted in, and the bits shifted out are
discarded.

If numbits is not specified, no shift occurs.

Return Values

142 | Chapter 1 AutoLISP Functions

The value of int after the bitwise shift. The returned value is positive if the
significant bit (bit number 31) contains a 0 after the shift operation; otherwise
it is negative. If no arguments are supplied, lsh returns 0.

The behavior is different from other languages (>> & << of C, C++, or Java)
where more than 32 left shifts (of a 32 bit integer) result in 0. In right shift,
the integer appears again on every 32 shifts.

Examples
Command: (lsh 2 1)
4
Command: (lsh 2 -1)
1
Command: (lsh 40 2)
160

M Functions

mapcar

Returns a list that is the result of executing a function with a list (or lists)
supplied as arguments to the function

(mapcar
function

list1

...
listn

)

Arguments

function A function.

list1... listn One or more lists. The number of lists must match the number of
arguments required by function.

Return Values

A list.

Examples

AutoLISP Functions | 143

Command: (setq a 10 b 20 c 30)
30
Command: (mapcar '1+ (list a b c))
(11 21 31)

This is equivalent to the following series of expressions, except that mapcar

returns a list of the results:

(1+ a)
(1+ b)
(1+ c)

The lambda function can specify an anonymous function to be performed
by mapcar. This is useful when some of the function arguments are constant
or are supplied by some other means. The following example, demonstrates
the use of lambda with mapcar:

(mapcar '(lambda (x)

 (+ x 3)

)

 '(10 20 30)

)

(13 23 33)

max

Returns the largest of the numbers given

(max [
number number

...])

Arguments

number A number.

Return Values

A number. If any of the arguments are real numbers, a real is returned;
otherwise an integer is returned. If no argument is supplied, max returns 0.

144 | Chapter 1 AutoLISP Functions

Examples
Command: (max 4.07 -144)
4.07
Command: (max -88 19 5 2)
19
Command: (max 2.1 4 8)
8.0

mem

Displays the current state of the AutoLISP memory

(mem)

The mem function displays statistics on AutoLISP memory usage. The first
line of this statistics report contains the following information:

GC calls Number of garbage collection calls since AutoLISP started.

GC run time Total time spent collecting garbage (in milliseconds).

LISP objects are allocated in dynamic (heap) memory that is organized in
segments and divided into pages. Memory is described under the heading,
“Dynamic Memory Segments Statistics”:

PgSz Dynamic memory page size (in KB).

Used Number of pages used.

Free Number of free (empty) pages.

FMCL Largest contiguous area of free pages.

Segs Number of segments allocated.

Type Internal description of the types of objects allocated in this segment.
These include

lisp stacks—LISP internal stacks

bytecode area—compiled code function modules

CONS memory—CONS objects

::new—untyped memory requests served using this segment

DM Str—dynamic string bodies

DMxx memory—all other LISP nodes

AutoLISP Functions | 145

bstack body—internal structure used for IO operations

The final line in the report lists the minimal segment size and the number of
allocated segments. AutoLISP keeps a list of no more than three free segments
in order to save system calls for memory requests.

All heap memory is global; that is, all AutoCAD for Mac documents share the
same heap. This could change in future releases of AutoCAD for Mac.

Note that mem does not list all memory requested from the operating system;
it lists only those requests served by the AutoLISP Dynamic Memory (DM)
subsystem. Some AutoLISP classes do not use DM for memory allocation.

Return Values

nil

Examples
Command: (mem)

; GC calls: 23; GC run time: 298 ms
Dynamic memory segments statistic:
PgSz Used Free FMCL Segs Type
512 79 48 48 1 lisp stacks
256 3706 423 142 16 bytecode area
4096 320 10 10 22 CONS memory
32 769 1213 1089 1 ::new

4096 168 12 10 12 DM Str
4096 222 4 4 15 DMxx memory
128 4 507 507 1 bstack body
Segment size: 65536, total used: 68, free: 0
nil

member

Searches a list for an occurrence of an expression and returns the remainder
of the list, starting with the first occurrence of the expression

(member
expr lst

)

Arguments

146 | Chapter 1 AutoLISP Functions

expr The expression to be searched for.

lst The list in which to search for expr.

Return Values

A list; otherwise nil, if there is no occurrence of expr in lst.

Examples
Command: (member 'c '(a b c d e))
(C D E)
Command: (member 'q '(a b c d e))
nil

menucmd

Evaluates DIESEL expressions

(menucmd
string

)

The menucmd function also allows AutoLISP programs to take advantage of
the DIESEL string expression language. Some things can be done more easily
with DIESEL than with the equivalent AutoLISP code. The following code
returns a string containing the current day and date:

(menucmd "M=$(edtime,$(getvar,date),DDDD\",\" D MONTH
YYYY)")
"Sunday, 16 July 1995"

See also:

The Customization Guide for more information on using AutoLISP to access
menu label status, and for information on using DIESEL.

min

Returns the smallest of the numbers given

(min [

AutoLISP Functions | 147

number number

...])

Arguments

number A number.

Return Values

A number. If any number argument is a real, a real is returned; otherwise, an
integer is returned. If no argument is supplied, min returns 0.

Examples
Command: (min 683 -10.0)
-10.0
Command: (min 73 2 48 5)
2
Command: (min 73.0 2 48 5)
2.0
Command: (min 2 4 6.7)
2.0

minusp

Verifies that a number is negative

(minusp
num

)

Arguments

num A number.

Return Values

T if number is negative; otherwise nil.

Examples
Command: (minusp -1)
T
Command: (minusp -4.293)
T
Command: (minusp 830.2)

148 | Chapter 1 AutoLISP Functions

nil

N Functions

namedobjdict

Returns the entity name of the current drawing's named object dictionary,
which is the root of all nongraphical objects in the drawing

(namedobjdict)

Using the name returned by this function and the dictionary access functions,
an application can access the nongraphical objects in the drawing.

nentsel

Prompts the user to select an object (entity) by specifying a point, and provides
access to the definition data contained within a complex object

(nentsel
[msg]

)

The nentsel function prompts the user to select an object. The current Object
Snap mode is ignored unless the user specifically requests it. To provide
additional support at the Command prompt, nentsel honors keywords defined
by a previous call to initget.

Arguments

msg A string to be displayed as a prompt. If the msg argument is omitted, the
Select Object prompt is issued.

Return Values

When the selected object is not complex (that is, not a 3D polyline or block),
nentsel returns the same information as entsel. However, if the selected object
is a 3D polyline, nentsel returns a list containing the name of the subentity
(vertex) and the pick point. This is similar to the list returned by entsel, except
that the name of the selected vertex is returned instead of the polyline header.

AutoLISP Functions | 149

The nentsel function always returns the starting vertex of the selected 3D
polyline segment. Picking the third segment of the polyline, for example,
returns the third vertex. The Seqend subentity is never returned by nentsel

for a 3D polyline.

NOTE

A lightweight polyline (lwpolyline entity) is defined in the drawing database
as a single entity; it does not contain subentities.

Selecting an attribute within a block reference returns the name of the attribute
and the pick point. When the selected object is a component of a block
reference other than an attribute, nentsel returns a list containing four
elements.

The first element of the list returned from picking an object within a block is
the selected entity's name.

The second element is a list containing the coordinates of the point used to
pick the object.

The third element is called the Model to World Transformation Matrix. It is
a list consisting of four sublists, each of which contains a set of coordinates.
This matrix can be used to transform the entity definition data points from
an internal coordinate system called the Model Coordinate System (MCS), to
the World Coordinate System (WCS). The insertion point of the block that
contains the selected entity defines the origin of the MCS. The orientation of
the UCS when the block is created determines the direction of the MCS axes.

NOTE nentsel is the only AutoLISP function that uses a matrix of this type; the
nentselp function returns a matrix similar to those used by other AutoLISP and
ObjectARX functions.

The fourth element is a list containing the entity name of the block that
contains the selected object. If the selected object is in a nested block (a block
within a block), the list also contains the entity names of all blocks in which
the selected object is nested, starting with the innermost block and continuing
outward until the name of the block that was inserted in the drawing is
reported.

For information about converting MCS coordinates to WCS, see the Entity
Context and Coordinate Transform Data topic in Using AutoLISP to Manipulate
AutoCAD for Mac Objects in the AutoLISP Developer's Guide.

Examples

150 | Chapter 1 AutoLISP Functions

Draw a 3D polyline with multiple line segments; then load and run the
following function and select different segments of the line. Pick off the line
and then pick the same segments again to see the subentity handle. Try it
with a lightweight polyline to see the difference.

(defun c:subent ()
(while

(setq Ent (entsel "\nPick an entity: "))
(print (strcat "Entity handle is: "

(cdr (assoc 5 (entget (car Ent))))))
)
(while

(setq Ent (nentsel "\nPick an entity or subEntity:
"))

(print (strcat "Entity or subEntity handle is: "
(cdr (assoc 5 (entget (car Ent))))))

)
(prompt "\nDone.")
(princ)

)

See also:

The entsel (page 77), initget (page 118),and nentselp (page 151) functions.
The Entity Name Functions in the AutoLISP Developer's Guide.

nentselp

Provides similar functionality to that of the nentsel function without the need
for user input

(nentselp
[msg] [pt]

)

Arguments

msg A string to be displayed as a prompt. If the msg argument is omitted, the
Select object prompt is issued.

pt A selection point. This allows object selection without user input.

Return Values

AutoLISP Functions | 151

The nentselp function returns a 4×4 transformation matrix, defined as follows:

The first three columns of the matrix specify scaling and rotation. The fourth
column is a translation vector.

The functions that use a matrix of this type treat a point as a column vector
of dimension 4. The point is expressed in homogeneous coordinates, where the
fourth element of the point vector is a scale factor that is normally set to 1.0.
The final row of the matrix, the vector [M30M31M32M33], has the nominal
value of [0 0 0 1]; it is currently ignored by the functions that use this matrix
format.

See also:

The initget (page 118) and nentsel (page 149) functions.

not

Verifies that an item evaluates to nil

(not
item

)

Typically, the null function is used for lists, and not is used for other data
types along with some types of control functions.

Arguments

item An AutoLISP expression.

Return Values

T if item evaluates to nil; otherwise nil.

Examples
Command: (setq a 123 b "string" c nil)
nil
Command: (not a)
nil
Command: (not b)
nil
Command: (not c)
T

152 | Chapter 1 AutoLISP Functions

Command: (not '())
T

See also:

The null (page 153) function.

nth

Returns the nth element of a list

(nth
n lst

)

Arguments

n The number of the element to return from the list (zero is the first element).

lst The list.

Return Values

The nth element of lst. If n is greater than the highest element number of lst,
nth returns nil.

Examples
Command: (nth 3 '(a b c d e))
D
Command: (nth 0 '(a b c d e))
A
Command: (nth 5 '(a b c d e))
nil

null

Verifies that an item is bound to nil

(null
item

)

AutoLISP Functions | 153

Arguments

item An AutoLISP expression.

Return Values

T if item evaluates to nil; otherwise nil.

Examples
Command: (setq a 123 b "string" c nil)
nil
Command: (null a)
nil
Command: (null b)
nil
Command: (null c)
T
Command: (null '())
T

See also:

The not (page 152) function.

numberp

Verifies that an item is a real number or an integer

(numberp
item

)

Arguments

item An AutoLISP expression.

Return Values

T if item evaluates to a real or an integer; otherwise nil.

Examples
Command: (setq a 123 b 'a)
A
Command: (numberp 4)
T

154 | Chapter 1 AutoLISP Functions

Command: (numberp 3.8348)
T
Command: (numberp "Howdy")
nil
Command: (numberp a)
T
Command: (numberp b)
nil
Command: (numberp (eval b))
T

O Functions

open

Opens a file for access by the AutoLISP I/O functions

(open
filename mode

)

Arguments

filename A string that specifies the name and extension of the file to be opened.
If you do not specify the full path name of the file, open assumes you are
referring to the AutoCAD for Mac default drawing directory.

mode Indicates whether the file is open for reading, writing, or appending.
Specify a string containing one of the following letters:

r Open for reading.

w Open for writing. If filename does not exist, a new file is created and opened.
If filename already exists, its existing data is overwritten. Data passed to an
open file is not actually written until the file is closed with the close function.

a Open for appending. If filename does not exist, a new file is created and
opened. If filename already exists, it is opened and the pointer is positioned
at the end of the existing data, so new data you write to the file is appended
to the existing data.

The mode argument can be uppercase or lowercase. Note that in releases prior
to AutoCAD 2000, mode had to be specified in lowercase.

AutoLISP Functions | 155

Return Values

If successful, open returns a file descriptor that can be used by the other I/O
functions. If mode "r" is specified and filename does not exist, open returns
nil.

Examples

Open an existing file:
Command: (setq a (open "/myutilities/help/filelist.txt" "r"))
#<file "/myutilities/help/filelist.txt">

The following examples issue open against files that do not exist:
Command: (setq f (open "/documents/new.tst" "w"))
#<file "/my documents/new.tst">
Command: (setq f (open "nosuch.fil" "r"))
nil
Command: (setq f (open "logfile" "a"))
#<file "logfile">

or

Returns the logical OR of a list of expressions

(or
[expr

...
]

)

The or function evaluates the expressions from left to right, looking for a
non-nil expression.

Arguments

expr The expressions to be evaluated.

Return Values

T, if a non-nil expression is found; otherwise nil, if all of the expressions are
nil or no arguments are supplied.

Note that or accepts an atom as an argument and returns T if one is supplied.

Examples

156 | Chapter 1 AutoLISP Functions

Command: (or nil 45 '())
T
Command: (or nil '())
nil

osnap

Returns a 3D point that is the result of applying an Object Snap mode to a
specified point

(osnap
pt mode

)

Arguments

pt A point.

mode A string that consists of one or more valid Object Snap identifiers, such
as mid, cen, and so on, separated by commas.

Return Values

A point; otherwise nil, if the pick did not return an object (for example, if
there is no geometry under the pick aperture, or if the geometry is not
applicable to the selected object snap mode). The point returned by osnap

depends on the current 3D view, the AutoCAD for Mac entity around pt, and
the setting of the APERTURE system variable in the Command Reference.

Examples
Command: (setq pt1 (getpoint))
(11.8637 3.28269 0.0)
Command: (setq pt2 (osnap pt1 "_end,_int"))
(12.1424 3.42181 0.0)

P Functions

polar

Returns the UCS 3D point at a specified angle and distance from a point

AutoLISP Functions | 157

(polar
pt ang dist

)

Arguments

pt A 2D or 3D point.

ang An angle expressed in radians relative to the world X axis. Angles increase
in the counterclockwise direction, independent of the current construction
plane.

dist Distance from the specified pt.

Return Values

A 2D or 3D point, depending on the type of point specified by pt.

Examples

Supplying a 3D point to polar:
Command: (polar '(1 1 3.5) 0.785398 1.414214)
(2.0 2.0 3.5)

Supplying a 2D point to polar:
Command: (polar '(1 1) 0.785398 1.414214)
(2.0 2.0)

prin1

Prints an expression to the command line or writes an expression to an open
file

(prin1
[expr [file-desc]]

)

Arguments

expr A string or AutoLISP expression. Only the specified expr is printed; no
newline or space is included.

file-desc A file descriptor for a file opened for writing.

Return Values

158 | Chapter 1 AutoLISP Functions

The value of the evaluated expr. If called with no arguments, prin1 returns a
null symbol.

Used as the last expression in a function, prin1 without arguments prints a
blank line when the function completes, allowing the function to exit
“quietly.”

Examples
Command: (setq a 123 b '(a))
(A)
Command: (prin1 'a)
AA

The previous command printed A and returned A.
Command: (prin1 a)
123123

The previous command printed 123 and returned 123.
Command: (prin1 b)
(A)(A)

The previous command printed (A) and returned (A).

Each preceding example is displayed on the screen because no file-desc was
specified. Assuming that f is a valid file descriptor for a file opened for writing,
the following function call writes a string to that file and returns the string:
Command: (prin1 "Hello" f)
"Hello"

If expr is a string containing control characters, prin1 expands these characters
with a leading \, as shown in the following table:

Control codes

DescriptionCode

\ character\\

" character\"

Escape character\e

Newline character\n

AutoLISP Functions | 159

Control codes

DescriptionCode

Return character\r

TAB character\t

Character whose octal code is nnn\nnn

The following example shows how to use control characters:
Command: (prin1 (chr 2))
"\002""\002"

See also:

Displaying Messages in the AutoLISP Developer's Guide.

princ

Prints an expression to the command line, or writes an expression to an open
file

(princ
[expr [file-desc]]

)

This function is the same as prin1, except control characters in expr are printed
without expansion. In general, prin1 is designed to print expressions in a way
that is compatible with load, while princ prints them in a way that is readable
by functions such as read-line.

Arguments

expr A string or AutoLISP expression. Only the specified expr is printed; no
newline or space is included.

file-desc A file descriptor for a file opened for writing.

Return Values

160 | Chapter 1 AutoLISP Functions

The value of the evaluated expr. If called with no arguments, princ returns a
null symbol.

See also:

The Displaying Messages topic in the AutoLISP Developer's Guide.

print

Prints an expression to the command line, or writes an expression to an open
file

(print
[expr [file-desc]]

)

This function is the same as prin1, except it prints a newline character before
expr, and prints a space following expr.

Arguments

expr A string or AutoLISP expression. Only the specified expr is printed; no
newline or space is included.

file-desc A file descriptor for a file opened for writing.

Return Values

The value of the evaluated expr. If called with no arguments, print returns a
null symbol.

See also:

The Displaying Messages topic in the AutoLISP Developer's Guide.

progn

Evaluates each expression sequentially and returns the value of the last
expression

(progn
[expr]

AutoLISP Functions | 161

...)

You can use progn to evaluate several expressions where only one expression
is expected.

Arguments

expr One or more AutoLISP expressions.

Return Values

The result of the last evaluated expression.

Examples

The if function normally evaluates one then expression if the test expression
evaluates to anything but nil. The following example uses progn to evaluate
two expressions following if:

(if (= a b)
(progn
(princ "\nA = B ")
(setq a (+ a 10) b (- b 10))

)
)

See also:

The if (page 115) function.

prompt

Displays a string on your screen's prompt area

(prompt
msg

)

Arguments

msg A string.

Return Values

nil

162 | Chapter 1 AutoLISP Functions

Examples
Command: (prompt "New value: ")
New value: nil

See also:

The Displaying Messages topic in the AutoLISP Developer's Guide.

Q Functions

quit

Forces the current application to quit

(quit)

If quit is called, it returns the error message quit/exit abort and returns to the
AutoCAD for Mac Command prompt.

See also:

The exit (page 84) function.

quote

Returns an expression without evaluating it

(quote
expr

)

Arguments

expr An AutoLISP expression.

Return Values

The expr argument.

Examples
Command: (quote a)

AutoLISP Functions | 163

A

The previous expression can also be written as 'a. For example:
Command: !'a
A
Command: (quote (a b))
(A B)

See also:

The function (page 89) function.

R Functions

read

Returns the first list or atom obtained from a string

(read
[string]

)

The read function parses the string representation of any LISP data and returns
the first expression in the string, converting it to a corresponding data type.

Arguments

string A string. The string argument should not contain blanks, except within
a list or string.

Return Values

A list or atom. The read function returns its argument converted into the
corresponding data type. If no argument is specified, read returns nil.

If the string contains multiple LISP expressions separated by LISP symbol
delimiters such as blanks, newline, tabs, or parentheses, only the first
expression is returned.

Examples
Command: (read "hello")
HELLO
Command: (read "hello there")

164 | Chapter 1 AutoLISP Functions

HELLO
Command: (read "\"Hi Y'all\"")
"Hi Y'all"
Command: (read "(a b c)")
(A B C)
Command: (read "(a b c) (d)")
(A B C)
Command: (read "1.2300")
1.23
Command: (read "87")
87
Command: (read "87 3.2")
87

read-char

Returns the decimal ASCII code representing the character read from the
keyboard input buffer or from an open file

(read-char
[file-desc]

)

Arguments

file-desc A file descriptor (obtained from open) referring to an open file. If no
file-desc is specified, read-char obtains input from the keyboard input buffer.

Return Values

An integer representing the ASCII code for a character. The read-char function
returns a single newline character (ASCII code 10) whenever it detects an
end-of-line character or character sequence.

Examples

The following example omits file-desc, so read-char looks for data in the
keyboard buffer:
Command: (read-char)

The keyboard buffer is empty, so read-char waits for user input:

ABC

AutoLISP Functions | 165

65

The user entered ABC; read-char returned the ASCII code representing the
first character entered (A). The next three calls to read-char return the data
remaining in the keyboard input buffer. This data translates to 66 (the ASCII
code for the letter B), 67 (C), and 10 (newline), respectively:
Command: (read-char)
66
Command: (read-char)
67
Command: (read-char)
10

With the keyboard input buffer now empty, read-char waits for user input
the next time it is called:
Command: (read-char)

read-line

Reads a string from the keyboard or from an open file, until an end-of-line
marker is encountered

(read-line
[file-desc]

)

Arguments

file-desc A file descriptor (obtained from open) referring to an open file. If no
file-desc is specified, read-line obtains input from the keyboard input buffer.

Return Values

The string read by read-line, without the end-of-line marker. If read-line

encounters the end of the file, it returns nil.

Examples

Open a file for reading:
Command: (setq f (open "/documents/new.txt" "r"))
#<file "/documents/new.txt">

Use read-line to read a line from the file:

166 | Chapter 1 AutoLISP Functions

Command: (read-line f)
"To boldly go where nomad has gone before."

Obtain a line of input from the user:
Command: (read-line)
To boldly go
"To boldly go"

redraw

Redraws the current viewport or a specified object (entity) in the current
viewport

(redraw
[ename [mode]]

)

If redraw is called with no arguments, the function redraws the current
viewport. If called with an entity name argument, redraw redraws the specified
entity.

The redraw function has no effect on highlighted or hidden entities; however,
a REGEN command forces the entities to redisplay in their normal manner.

Arguments

ename The name of the entity name to be redrawn.

mode An integer value that controls the visibility and highlighting of the
entity. The mode can be one of the following values:

1 Show entity

2 Hide entity (blank it out)

3 Highlight entity

4 Unhighlight entity

The use of entity highlighting (mode 3) must be balanced with entity
unhighlighting (mode 4).

If ename is the header of a complex entity (a polyline or a block reference with
attributes), redraw processes the main entity and all its subentities if the mode
argument is positive. If the mode argument is negative, redraw operates on
only the header entity.

Return Values

AutoLISP Functions | 167

The redraw function always returns nil.

regapp

Registers an application name with the current AutoCAD for Mac drawing in
preparation for using extended object data

(regapp
application

)

Arguments

application A string naming the application. The name must be a valid symbol
table name. See the description of <Undefined Cross-Reference> (page 180) for
the rules AutoLISP uses to determine if a symbol name is valid.

Return Values

If an application of the same name has already been registered, this function
returns nil; otherwise it returns the name of the application.

If registered successfully, the application name is entered into the APPID
symbol table. This table maintains a list of the applications that are using
extended data in the drawing.

Examples

(regapp "ADESK_4153322344")
(regapp "DESIGNER-v2.1-124753")

NOTE It is recommended that you pick a unique application name. One way of
ensuring this is to adopt a naming scheme that uses the company or product
name and a unique number (like your telephone number or the current date/time).
The product version number can be included in the application name or stored
by the application in a separate integer or real-number field; for example, (1040
2.1).

rem

Divides the first number by the second, and returns the remainder

168 | Chapter 1 AutoLISP Functions

(rem
[number number

...
]

)

Arguments

number Any number.

If you provide more than two numbers, rem divides the result of dividing the
first number by the second with the third, and so on.

If you provide more than two numbers, rem evaluates the arguments from
left to right. For example, if you supply three numbers, rem divides the first
number by the second, then takes the result and divides it by the third number,
returning the remainder of that operation.

Return Values

A number. If any number argument is a real, rem returns a real; otherwise, rem

returns an integer. If no arguments are supplied, rem returns 0. If a single
number argument is supplied, rem returns number.

Examples
Command: (rem 42 12)
6
Command: (rem 12.0 16)
12.0
Command: (rem 26 7 2)
1

repeat

Evaluates each expression a specified number of times, and returns the value
of the last expression

(repeat
int [expr

...
]

)

AutoLISP Functions | 169

Arguments

int An integer. Must be a positive number.

expr One or more atoms or expressions.

Return Values

The value of the last expression or atom evaluated. If expr is not supplied,
repeat returns nil.

Examples
Command: (setq a 10 b 100)
100
Command: (repeat 4 (setq a (+ a 10)) (setq b (+ b 100)))
500

After evaluation, a is 50, b is 500, and repeat returns 500.

If strings are supplied as arguments, repeat returns the last string:
Command: (repeat 100 "Me" "You")
"You"

reverse

Returns a copy of a list with its elements reversed

(reverse
lst

)

Arguments

lst A list.

Return Values

A list.

Examples
Command: (reverse '((a) b c))
(C B (A))

170 | Chapter 1 AutoLISP Functions

rtos

Converts a number into a string

(rtos
number [mode [precision]]

)

The rtos function returns a string that is the representation of number according
to the settings of mode, precision, and the system variables UNITMODE,
DIMZIN, LUNITS, and LUPREC.

Arguments

number A number.

mode An integer specifying the linear units mode. The mode corresponds to
the values allowed for the LUNITS AutoCAD for Mac system variable. The
mode can be one of the following numbers:

1 Scientific

2 Decimal

3 Engineering (feet and decimal inches)

4 Architectural (feet and fractional inches)

5 Fractional

precision An integer specifying the precision.

The mode and precision arguments correspond to the system variables LUNITS
and LUPREC. If you omit the arguments, rtos uses the current settings of
LUNITS and LUPREC.

Return Values

A string. The UNITMODE system variable affects the returned string when
engineering, architectural, or fractional units are selected (mode values 3, 4,
or 5).

Examples

Set variable x:
Command: (setq x 17.5)
17.5

Convert the value of x to a string in scientific format, with a precision of 4:
Command: (setq fmtval (rtos x 1 4))

AutoLISP Functions | 171

"1.7500E+01"

Convert the value of x to a string in decimal format, with 2 decimal places:
Command: (setq fmtval (rtos x 2 2))
"17.50"

Convert the value of x to a string in engineering format, with a precision of
2:
Command: (setq fmtval (rtos x 3 2))
"1'-5.50\""

Convert the value of x to a string in architectural format:
Command: (setq fmtval (rtos x 4 2))
"1'-5 1/2\""

Convert the value of x to a string in fractional format:
Command: (setq fmtval (rtos x 5 2))
"17 1/2"

Setting UNITMODE to 1 causes units to be displayed as entered. This affects
the values returned by rtos for engineering, architectural, and fractional
formats, as shown in the following examples:
Command: (setvar "unitmode" 1)
1
Command: (setq fmtval (rtos x 3 2))
"1'5.50\""
Command: (setq fmtval (rtos x 4 2))
"1'5-1/2\""
Command: (setq fmtval (rtos x 5 2))
"17-1/2"

See also:

The String Conversions topic in the AutoLISP Developer's Guide .

S Functions

set

Sets the value of a quoted symbol name to an expression

172 | Chapter 1 AutoLISP Functions

(set
sym expr

)

The set function is similar to setq except that set evaluates both of its
arguments whereas setq only evaluates its second argument.

Arguments

sym A symbol.

expr An AutoLISP expression.

Return Values

The value of the expression.

Examples

Each of the following commands sets symbol a to 5.0:

(set 'a 5.0)
(set (read "a") 5.0)
(setq a 5.0)

Both set and setq expect a symbol as their first argument, but set accepts an
expression that returns a symbol, whereas setq does not, as the following
shows:
Command: (set (read "a") 5.0)
5.0
Command: (setq (read "a") 5.0)
; *** ERROR: syntax error

See also:

The setq (page 176) function.

setcfg

Writes application data to the AppData section of the acad.cfg file

(setcfg
cfgname cfgval

AutoLISP Functions | 173

)

Arguments

cfgname A string that specifies the section and parameter to set with the value
of cfgval. The cfgname argument must be a string of the following form:

AppData/application_name/section_name/.../param_name

The string can be up to 496 characters long.

cfgval A string. The string can be up to 512 characters in length. Larger strings
are accepted by setcfg, but cannot be returned by getcfg.

Return Values

If successful, setcfg returns cfgval. If cfgname is not valid, setcfg returns nil.

Examples

The following code sets the WallThk parameter in the AppData/ArchStuff
section to 8, and returns the string “8”:
Command: (setcfg "AppData/ArchStuff/WallThk" "8")
"8"

See also:

The getcfg (page 93) function.

setenv

Sets a system environment variable to a specified value

(setenv
varname value

)

Arguments

varname A string specifying the name of the environment variable to be set.
Environment variable names must be spelled and cased exactly as they are
stored in the system registry.

value A string specifying the value to set varname to.

Return Values

value

174 | Chapter 1 AutoLISP Functions

Examples

The following command sets the value of the MaxArray environment variable
to 10000:
Command: (setenv "MaxArray" "10000")
"10000"

Note that changes to settings might not take effect until the next time
AutoCAD for Mac is started.

See also:

The getenv (page 96) function.

setpropertyvalue

Sets the property value for an entity.

(setpropertyvalue
ename propertyname value [or collectionName index name

val]
)

Arguments

ename Name of the entity being modified. The ename can refer to either a
graphical or a non-graphical entity.

propertyname Name of the property to be modified. For a list of all the valid
property names of a given object, use dumpallproperties.

value Value to set the property to when the object is not a collection.

collectionName If the object is a collection object, the Collection name is passed
here.

index The collection index to be modified.

name Name of the property in the collection to be modified.

val Value to set the property to.

Return Values

nil is returned unless an error occurs when the property value is being updated.

Examples

The following example demonstrates how to change the radius of a circle.

AutoLISP Functions | 175

Command: (command "_circle" "2,2" 2)
nil
Command: (setpropertyvalue (entlast) "radius" 3)

The following example demonstrates how to apply overrides to a linear
dimension.

Command: (command "_dimlinear" "2,2" "5,4" "3,3")
nil
Command: (setq e2 (entlast))
<Entity name: 10e2e4bd0>
Command: (setpropertyvalue e2 "Dimtfill" 2)
nil
Command: (setpropertyvalue e2 "Dimtfillclr" "2")
nil
Command: (setpropertyvalue e2 "Dimclrt" "255,0,0")
nil

The following example demonstrates how to change the first vertex of the
Vertices collection.

Command: (command "_pline" "0,0" "3,3" "5,2" "")
nil
Command: (setq e3 (entlast))
<Entity name: 10e2e4da0>
Command: (setpropertyvalue e3 "Vertices" 0 "EndWidth" 1.0)
nil

See also:

DumpAllProperties (page 64)

GetPropertyValue (page 103)

IsPropertyReadOnly (page 123)

setq

Sets the value of a symbol or symbols to associated expressions

(setq
sym expr [sym expr]

...)

176 | Chapter 1 AutoLISP Functions

This is the basic assignment function in AutoLISP. The setq function can
assign multiple symbols in one call to the function.

Arguments

sym A symbol. This argument is not evaluated.

expr An expression.

Return Values

The result of the last expr evaluated.

Examples

The following function call sets variable a to 5.0:
Command: (setq a 5.0)
5.0

Whenever a is evaluated, it returns the real number 5.0.

The following command sets two variables, b and c:
Command: (setq b 123 c 4.7)
4.7

setq returns the value of the last variable set.

In the following example, s is set to a string:
Command: (setq s "it")
"it"

The following example assigns a list to x:
Command: (setq x '(a b))
(A B)

See also:

The AutoLISP Variables topic in the AutoLISP Developer's Guide .

setvar

Sets an AutoCAD for Mac system variable to a specified value

(setvar
varname value

)

AutoLISP Functions | 177

Arguments

varname A string or symbol naming a variable.

value An atom or expression whose evaluated result is to be assigned to
varname. For system variables with integer values, the supplied value must be
between -32,768 and +32,767.

Return Values

If successful, setvar returns value.

Examples

Set the AutoCAD for Mac fillet radius to 0.5 units:
Command: (setvar "FILLETRAD" 0.50)
0.5

Notes on Using setvar

Some AutoCAD for Mac commands obtain the values of system variables
before issuing any prompts. If you use setvar to set a new value while a
command is in progress, the new value might not take effect until the next
AutoCAD for Mac command.

When using the setvar function to change the AutoCAD for Mac system
variable ANGBASE, the value argument is interpreted as radians. This differs
from the AutoCAD for Mac SETVAR command in the Command Reference,
which interprets this argument as degrees. When using the setvar function
to change the AutoCAD for Mac system variable SNAPANG, the value argument
is interpreted as radians relative to the AutoCAD for Mac default direction for
angle 0, which is east or 3 o'clock. This also differs from the SETVAR command,
which interprets this argument as degrees relative to the ANGBASE setting.

NOTE The UNDO command does not undo changes made to the CVPORT system
variable by the setvar function.

You can find a list of the current AutoCAD for Mac system variables in the
Command Reference.

See also:

The getvar (page 106) function.

178 | Chapter 1 AutoLISP Functions

setview

Establishes a view for a specified viewport

(setview
view_descriptor [vport_id]

)

Arguments

view_descriptor An entity definition list similar to that returned by tblsearch

when applied to the VIEW symbol table.

vport_id An integer identifying the viewport to receive the new view. If vport_id
is 0, the current viewport receives the new view.

You can obtain the vport_id number from the CVPORT system variable.

Return Values

If successful, the setview function returns the view_descriptor.

sin

Returns the sine of an angle as a real number expressed in radians

(sin
ang

)

Arguments

ang An angle, in radians.

Return Values

A real number representing the sine of ang, in radians.

Examples
Command: (sin 1.0)
0.841471
Command: (sin 0.0)
0.0

AutoLISP Functions | 179

snvalid

Checks the symbol table name for valid characters

(snvalid
sym_name [flag]

)

The snvalid function inspects the system variable EXTNAMES to determine
the rules to enforce for the active drawing. If EXTNAMES is 0, snvalid validates
using the symbol name rules in effect prior to AutoCAD 2000. If EXTNAMES
is 1 (the default value), snvalid validates using the rules for extended symbol
names introduced with AutoCAD 2000. The following are not allowed in
symbol names, regardless of the setting of EXTNAMES:
■ Control and graphic characters

■ Null strings

■ Vertical bars as the first or last character of the name

AutoLISP does not enforce restrictions on the length of symbol table names
if EXTNAMES is 1.

Arguments

sym_name A string that specifies a symbol table name.

flag An integer that specifies whether the vertical bar character is allowed
within sym_name. The flag argument can be one of the following:

0 Do not allow vertical bar characters anywhere in sym_name. This is the
default.

1 Allow vertical bar characters in sym_name, as long as they are not the first
or last characters in the name.

Return Values

T, if sym_name is a valid symbol table name; otherwise nil.

If EXTNAMES is 1, all characters are allowed except control and graphic
characters and the following:

Characters disallowed in symbol table names

less-than and greater-than symbol< >

180 | Chapter 1 AutoLISP Functions

Characters disallowed in symbol table names

forward slash and backslash/ \

quotation mark"

colon:

question mark?

asterisk*

vertical bar|

comma,

equal sign=

backquote`

semicolon (ASCII 59);

A symbol table name may contain spaces.

If EXTNAMES is 0, symbol table names can consist of uppercase and lowercase
alphabetic letters (e.g., A-Z), numeric digits (e.g., 0-9), and the dollar sign ($),
underscore (_), and hyphen (-) characters.

Examples

The following examples assume EXTNAMES is set to 1:
Command: (snvalid "hocus-pocus")
T
Command: (snvalid "hocus pocus")
T
Command: (snvalid "hocus%pocus")
T

The following examples assume EXTNAMES is set to 0:
Command: (snvalid "hocus-pocus")

AutoLISP Functions | 181

T
Command: (snvalid "hocus pocus")
nil
Command: (snvalid "hocus%pocus")
nil

The following example includes a vertical bar in the symbol table name:
Command: (snvalid "hocus|pocus")
nil

By default, the vertical bar character is considered invalid in all symbol table
names.

In the following example, the flag argument is set to 1, so snvalid considers
the vertical bar character to be valid in sym_name, as long as it is not the first
or last character in the name:
Command: (snvalid "hocus|pocus" 1)
T

sqrt

Returns the square root of a number as a real number

(sqrt
num

)

Arguments

num A number (integer or real).

Return Values

A real number.

Examples
Command: (sqrt 4)
2.0
Command: (sqrt 2.0)
1.41421

182 | Chapter 1 AutoLISP Functions

ssadd

Adds an object (entity) to a selection set, or creates a new selection set

(ssadd
[ename

[ss]]

)

Arguments

ename An entity name.

ss A selection set.

If called with no arguments, ssadd constructs a new selection set with no
members. If called with the single entity name argument ename, ssadd

constructs a new selection set containing that single entity. If called with an
entity name and the selection set ss, ssadd adds the named entity to the
selection set.

Return Values

The modified selection set passed as the second argument, if successful;
otherwise nil.

Examples

When adding an entity to a set, the new entity is added to the existing set,
and the set passed as ss is returned as the result. Thus, if the set is assigned to
other variables, they also reflect the addition. If the named entity is already
in the set, the ssadd operation is ignored and no error is reported.

Set e1 to the name of the first entity in drawing:
Command: (setq e1 (entnext))
<Entity name: 1d62d60>

Set ss to a null selection set:
Command: (setq ss (ssadd))
<Selection set: 2>

The following command adds the e1 entity to the selection set referenced by
ss:
Command: (ssadd e1 ss)
<Selection set: 2>

AutoLISP Functions | 183

Get the entity following e1:
Command: (setq e2 (entnext e1))
<Entity name: 1d62d68>

Add e2 to the ss entity:
Command: (ssadd e2 ss)
<Selection set: 2>

ssdel

Deletes an object (entity) from a selection set

(ssdel
ename

ss

)

Arguments

ename An entity name.

ss A selection set.

Return Values

The name of the selection set; otherwise nil, if the specified entity is not in
the set.

Note that the entity is actually deleted from the existing selection set, as
opposed to a new set being returned with the element deleted.

Examples

In the following examples, entity name e1 is a member of selection set ss,
while entity name e3 is not a member of ss:
Command: (ssdel e1 ss)
<Selection set: 2>

Selection set ss is returned with entity e1 removed.
Command: (ssdel e3 ss)
nil

The function returns nil because e3 is not a member of selection set ss.

184 | Chapter 1 AutoLISP Functions

ssget

Creates a selection set from the selected object

(ssget
[sel-method] [pt1 [pt2]] [pt-list] [filter-list]

)

Selection sets can contain objects from both paper and model space, but when
the selection set is used in an operation, ssget filters out objects from the space
not currently in effect. Selection sets returned by ssget contain main entities
only (no attributes or polyline vertices).

Arguments

sel-method A string that specifies the object selection method. Valid selection
methods are

C Crossing selection.

CP Cpolygon selection (all objects crossing and inside of the specified
polygon).

F Fence selection.

I Implied selection (objects selected while PICKFIRST is in effect).

L Last visible object added to the database.

P Last selection set created.

W Window selection.

WP WPolygon (all objects within the specified polygon).

X Entire database. If you specify the X selection method and do not provide
a filter-list, ssget selects all entities in the database, including entities on layers
that are off, frozen, and out of the visible screen.

:E Everything within the cursor's object selection pickbox.

:N Call ssnamex for additional information on container blocks and
transformation matrices for any entities selected during the ssget operation.
This additional information is available only for entities selected through
graphical selection methods such as Window, Crossing, and point picks.

Unlike the other object selection methods, :N may return multiple entities
with the same entity name in the selection set. For example, if the user selects
a subentity of a complex entity such as a BlockReference, PolygonMesh, or
old style polyline, ssget looks at the subentity that is selected when
determining if it has already been selected. However, ssget actually adds the

AutoLISP Functions | 185

main entity (BlockReference, PolygonMesh, and so on) to the selection set.
The result could be multiple entries with the same entity name in the selection
set (each will have different subentity information for ssnamex to report).

:R Allows entities in a long transaction to be selected.

:S Allow single selection only.

:U Enables subentity selection. Cannot be combined with the duplicate (":D")
or nested (":N") selection modes. In this mode, top-level entities are selected
by default, but the user can attempt to select subentities by pressing the CTRL
key while making the selection. This option is supported only with interactive
selections, such as window, crossing, and polygon. It is not supported for all,
filtered, or group selections.

:V Forces subentity selection. Treats all interactive, graphic selections performed
by the user as subentity selections. The returned selection set contains
subentities only. This option cannot be combined with the duplicate (":D")
or nested (":N") selection modes. This option is supported only with interactive
selections, such as window and crossing. It is not supported for all, filtered,
or group selections.

pt1 A point relative to the selection.

pt2 A point relative to the selection.

pt-list A list of points.

filter-list An association list that specifies object properties. Objects that match
the filter-list are added to the selection set.

If you omit all arguments, ssget prompts the user with the Select Objects
prompt, allowing interactive construction of a selection set.

If you supply a point but do not specify an object selection method, AutoCAD
for Mac assumes the user is selecting an object by picking a single point.

Return Values

The name of the created selection set if successful; otherwise nil if no objects
were selected.

Notes on the Object Selection Methods
■ When using the :N selection method, if the user selects a subentity of a

complex entity such as a BlockReference, PolygonMesh, or old style
polyline, ssget looks at the subentity that is selected when determining if
it has already been selected. However, ssget actually adds the main entity
(BlockReference, PolygonMesh, etc.) to the selection set. It is therefore
possible to have multiple entries with the same entity name in the selection

186 | Chapter 1 AutoLISP Functions

set (each will have different subentity information for ssnamex to report).
Because the :N method does not guarantee that each entry will be unique,
code that relies on uniqueness should not use selection sets created using
this option.

■ When using the L selection method in an MDI environment, you cannot
always count on the last object drawn to remain visible. For example, if
your application draws a line, and the user subsequently minimizes or
cascades the AutoCAD for Mac drawing window, the line may no longer
be visible. If this occurs, ssget with the "L" option will return nil.

Examples

Prompt the user to select the objects to be placed in a selection set:
Command: (ssget)
<Selection set: 2>

Create a selection set of the object passing through (2,2):
Command: (ssget '(2 2))
nil

Create a selection set of the most recently selected objects:
Command: (ssget "_P")
<Selection set: 4>

Create a selection set of the objects crossing the box from (0,0) to (1,1):
Command: (ssget "_C" '(0 0) '(1 1))
<Selection set: b>

Create a selection set of the objects inside the window from (0,0):
Command: (ssget "_W" '(0 0) '(5 5))
<Selection set: d>

By specifying filters, you can obtain a selection set that includes all objects of
a given type, on a given layer, or of a given color. The following example
returns a selection set that consists only of blue lines that are part of the
implied selection set (those objects selected while PICKFIRST is in effect):
Command: (ssget "_I" '((0 . "LINE") (62 . 5)))
<Selection set: 4>

The following examples of ssget require that a list of points be passed to the
function. The pt_list variable cannot contain points that define zero-length
segments.

Create a list of points:
Command: (setq pt_list '((1 1)(3 1)(5 2)(2 4)))

AutoLISP Functions | 187

((1 1) (3 1) (5 2) (2 4))

Create a selection set of all objects crossing and inside the polygon defined
by pt_list:
Command: (ssget "_CP" pt_list)
<Selection set: 13>

Create a selection set of all blue lines inside the polygon defined by pt_list:
Command: (ssget "_WP" pt_list '((0 . "LINE") (62 . 5)))
<Selection set: 8>

The selected objects are highlighted only when ssget is used with no
arguments. Selection sets consume AutoCAD for Mac temporary file slots, so
AutoLISP is not permitted to have more than 128 open at one time. If this
limit is reached, AutoCAD for Mac cannot create any more selection sets and
returns nil to all ssget calls. To close an unnecessary selection set variable,
set it to nil.

A selection set variable can be passed to AutoCAD for Mac in response to any
Select objects prompt at which selection by Last is valid. AutoCAD for Mac
then selects all the objects in the selection set variable.

The current setting of Object Snap mode is ignored by ssget unless you
specifically request it while you are in the function.

See also:

Selection Set Handling and Selection Set Filter Lists in the AutoLISP
Developer's Guide .

ssgetfirst

Determines which objects are selected and gripped

(ssgetfirst)

Returns a list of two selection sets similar to those passed to sssetfirst. The
first element in the list is always nil because AutoCAD no longer supports
grips on unselected objects. The second element is a selection set of entities
that are selected and gripped. Both elements of the list can be nil.

188 | Chapter 1 AutoLISP Functions

NOTE

Only entities from the current drawing's model space and paper space, not
nongraphical objects or entities in other block definitions, can be analyzed
by this function.

See also:

The ssget (page 185) and sssetfirst (page 194) functions.

sslength

Returns an integer containing the number of objects (entities) in a selection
set

(sslength
ss

)

Arguments

ss A selection set.

Return Values

An integer.

Examples

Add the last object to a new selection set:
Command: (setq sset (ssget "L"))
<Selection set: 8>

Use sslength to determine the number of objects in the new selection set:
Command: (sslength sset)
1

ssmemb

Tests whether an object (entity) is a member of a selection set

(ssmemb
ename

AutoLISP Functions | 189

ss

)

Arguments

ename An entity name.

ss A selection set.

Return Values

If ename is a member of ss, ssmemb returns the entity name. If ename is not
a member, ssmemb returns nil.

Examples

In the following examples, entity name e2 is a member of selection set ss,
while entity name e1 is not a member of ss:
Command: (ssmemb e2 ss)
<Entity name: 1d62d68>
Command: (ssmemb e1 ss)
nil

ssname

Returns the object (entity) name of the indexed element of a selection set

(ssname
ss

index

)

Entity names in selection sets obtained with ssget are always names of main
entities. Subentities (attributes and polyline vertices) are not returned. (The
entnext function allows access to them.)

Arguments

ss A selection set.

index An integer (or real) indicating an element in a selection set. The first
element in the set has an index of zero. To access entities beyond number
32,767 in a selection set, you must supply the index argument as a real.

Return Values

190 | Chapter 1 AutoLISP Functions

An entity name, if successful. If index is negative or greater than the
highest-numbered entity in the selection set, ssname returns nil.

Examples

Get the name of the first entity in a selection set:
Command: (setq ent1 (ssname ss 0))
<Entity name: 1d62d68>

Get the name of the fourth entity in a selection set:
Command: (setq ent4 (ssname ss 3))
<Entity name: 1d62d90>

To access entities beyond the number 32,767 in a selection set, you must
supply the index argument as a real, as in the following example:

(setq entx (ssname sset 50843.0))

See also:

The entnext (page 75) function.

ssnamex

Retrieves information about how a selection set was created

(ssnamex
ss [index]

)

Only selection sets with entities from the current drawing's model space and
paper space—not nongraphical objects or entities in other block
definitions—can be retrieved by this function.

Arguments

ss A selection set.

index An integer (or real) indicating an element in a selection set. The first
element in the set has an index of zero.

Return Values

If successful, ssnamex returns the name of the entity at index, along with data
describing how the entity was selected. If the index argument is not supplied,

AutoLISP Functions | 191

this function returns a list containing the entity names of the elements in the
selection set, along with data that describes how each entity was selected. If
index is negative or greater than the highest-numbered entity in the selection
set, ssnamex returns nil.

The data returned by ssnamex takes the form of a list of lists containing
information that describes either an entity and its selection method or a
polygon used to select one or more entities. Each sublist that describes the
selection of a particular entity comprises three parts: the selection method ID
(an integer >= 0), the entity name of the selected entity, and selection method
specific data that describes how the entity was selected.

((
sel_id1 ename1

(
data

))(
sel_id2

ename2

(
data

)) ...)

The following table lists the selection method IDs:

Selection method IDs

DescriptionID

Nonspecific (i.e., Last All)0

Pick1

Window or WPolygon2

Crossing or CPolygon3

Fence4

Each sublist that both describes a polygon and is used during entity selection
takes the form of a polygon ID (an integer < 0), followed by point descriptions.

192 | Chapter 1 AutoLISP Functions

(
polygon_id

point_description_1

point_description_n

...)

Polygon ID numbering starts at -1 and each additional polygon ID is
incremented by -1. Depending on the viewing location, a point is represented
as one of the following: an infinite line, a ray, or a line segment. A point
descriptor comprises three parts: a point descriptor ID (the type of item being
described), the start point of the item, and an optional unit vector that
describes either the direction in which the infinite line travels or a vector that
describes the offset to the other side of the line segment.

(
point_descriptor_id

base_point

[unit_or_offset_vector]

)

The following table lists the valid point descriptor IDs:

Point descriptor IDs

DescriptionID

Infinite line0

Ray1

Line segment2

The unit_or_offset_vector is returned when the view point is something other
than 0,0,1.

Examples

The data associated with Pick (type 1) entity selections is a single point
description. For example, the following record is returned for the selection of
an entity picked at 1,1 in plan view of the WCS:
Command: (ssnamex ss3 0)

AutoLISP Functions | 193

((1 <Entity name: 1d62da0> 0 (0 (1.0 1.0 0.0))))

The data associated with an entity selected with the Window, WPolygon,
Crossing, or CPolygon method is the integer ID of the polygon that selected
the entity. It is up to the application to associate the polygon identifiers and
make the connection between the polygon and the entities it selected. For
example, the following returns an entity selected by Crossing (note that the
polygon ID is -1):
Command: (ssnamex ss4 0)
((3 <Entity name: 1d62d60> 0 -1) (-1 (0 (-1.80879 8.85536
0.0)) (0 (13.4004 8.85536 0.0)) (0 (13.4004 1.80024 0.0)) (0
(-1.80879 1.80024 0.0))))

The data associated with fence selections is a list of points and descriptions
for the points where the fence and entity visually intersect. For example, the
following command returns information for a nearly vertical line intersected
three times by a Z-shaped fence:
Command: (ssnamex ss5 0)
((4 <Entity name: 1d62d88> 0 (0 (5.28135 6.25219 0.0)) (0
(5.61868 2.81961 0.0)) (0 (5.52688 3.75381 0.0))))

sssetfirst

Sets which objects are selected and gripped

(sssetfirst
gripset

[pickset]

)

The gripset argument is ignored; the selection set of objects specified by pickset
are selected and gripped.

You are responsible for creating a valid selection set. For example, you may
need to verify that a background paper space viewport (DXF group code 69)
is not included in the selection set. You may also need to ensure that selected
objects belong to the current layout, as in the following code:

(setq ss (ssget (list (cons 410 (getvar "ctab")))))

Arguments

194 | Chapter 1 AutoLISP Functions

gripset AutoCAD no longer supports grips on unselected objects, so this
argument is ignored. However, if gripset is nil and no pickset is specified,
sssetfirst turns off the grip handles and selections it previously turned on.

pickset A selection set to be selected.

Return Values

The selection set or sets specified.

Examples

First, draw a square and build three selection sets. Begin by drawing side 1
and creating a selection set to include the line drawn:
Command: (entmake (list (cons 0 "line") '(10 0.0 0.0 0.0)'(11 0.0 10.0
0.0)))
((0 . "line") (10 0.0 0.0 0.0) (11 0.0 10.0 0.0))
Command: (setq pickset1 (ssget "_l"))
<Selection set: a5>

Variable pickset1 points to the selection set created.

Draw side 2 and add it to the pickset1 selection set:
Command: (entmake (list (cons 0 "line") '(10 0.0 10.0 0.0)'(11 10.0 10.0
0.0)))
((0 . "line") (10 0.0 10.0 0.0) (11 10.0 10.0 0.0))
Command: (ssadd (entlast) pickset1)
<Selection set: a5>

Create another selection set to include only side 2:
Command: (setq 2onlyset (ssget "_l"))
<Selection set: a8>

Draw side 3 and add it to the pickset1 selection set:
Command: (entmake (list (cons 0 "line") '(10 10.0 10.0 0.0)'(11 10.0
0.0 0.0)))
((0 . "line") (10 10.0 10.0 0.0) (11 10.0 0.0 0.0))
Command: (ssadd (entlast) pickset1)
<Selection set: a5>

Create another selection and include side 3 in the selection set:
Command: (setq pickset2 (ssget "_l"))
<Selection set: ab>

Variable pickset2 points to the new selection set.

Draw side 4 and add it to the pickset1 and pickset2 selection sets:

AutoLISP Functions | 195

Command: (entmake (list (cons 0 "line") '(10 10.0 0.0 0.0)'(11 0.0 0.0
0.0)))
((0 . "line") (10 10.0 0.0 0.0) (11 0.0 0.0 0.0))
Command: (ssadd (entlast) pickset1)
<Selection set: a5>
Command: (ssadd (entlast) pickset2)
<Selection set: ab>

At this point, pickset1 contains sides 1-4, pickset2 contains sides 3 and 4,
and 2onlyset contains only side 2.

Turn grip handles on and select all objects in pickset1:
Command: (sssetfirst nil pickset1)
(nil <Selection set: a5>)

Turn grip handles on and select all objects in pickset2:
Command: (sssetfirst nil pickset2)
(nil <Selection set: ab>)

Turn grip handles on and select all objects in 2onlyset:
Command: (sssetfirst nil 2onlyset)
(nil <Selection set: a8>)

Each sssetfirst call replaces the gripped and selected selection set from the
previous sssetfirst call.

NOTE Do not call sssetfirst when AutoCAD for Mac is in the middle of executing
a command.

See also:

The ssget (page 185) and ssgetfirst (page 188) functions.

startapp

Starts a Windows application

(startapp
appcmd

[file]

)

196 | Chapter 1 AutoLISP Functions

Arguments

appcmd A string that specifies the application to execute. If appcmd does not
include a full path name, startapp searches the directories in the PATH
environment variable for the application.

file A string that specifies the file name to be opened.

Return Values

An integer greater than 0, if successful; otherwise nil.

Examples

The following code starts TextEdit and opens the acad.lsp file.
Command: (startapp "TextEdit.app" "acad.lsp")
33

The following code starts TextEdit and opens the my stuff.txt file in the
/myutilities/lsupport directory.
Command: (startapp "textedit.app" "/myutilities/support/my
stuff.txt")
33

strcase

Returns a string where all alphabetic characters have been converted to
uppercase or lowercase

(strcase
string [which]

)

Arguments

string A string.

which If specified as T, all alphabetic characters in string are converted to
lowercase. Otherwise, characters are converted to uppercase.

Return Values

A string.

Examples
Command: (strcase "Sample")

AutoLISP Functions | 197

"SAMPLE"
Command: (strcase "Sample" T)
"sample"

The strcase function will correctly handle case mapping of the currently
configured character set.

strcat

Returns a string that is the concatenation of multiple strings

(strcat
[string

[string]

...
]

)

Arguments

string A string.

Return Values

A string. If no arguments are supplied, strcat returns a zero-length string.

Examples
Command: (strcat "a" "bout")
"about"
Command: (strcat "a" "b" "c")
"abc"
Command: (strcat "a" "" "c")
"ac"
Command: (strcat)
""

strlen

Returns an integer that is the number of characters in a string

198 | Chapter 1 AutoLISP Functions

(strlen
[string]

...)

Arguments

string A string.

Return Values

An integer. If multiple string arguments are provided, strlen returns the sum
of the lengths of all arguments. If you omit the arguments or enter an empty
string, strlen returns 0.

Examples
Command: (strlen "abcd")
4
Command: (strlen "ab")
2
Command: (strlen "one" "two" "four")
10
Command: (strlen)
0
Command: (strlen "")
0

subst

Searches a list for an old item and returns a copy of the list with a new item
substituted in place of every occurrence of the old item

(subst
newitem olditem lst

)

Arguments

newitem An atom or list.

olditem An atom or list.

lst A list.

Return Values

AutoLISP Functions | 199

A list, with newitem replacing all occurrences of olditem. If olditem is not found
in lst, subst returns lst unchanged.

Examples
Command: (setq sample '(a b (c d) b))
(A B (C D) B)
Command: (subst 'qq 'b sample)
(A QQ (C D) QQ)
Command: (subst 'qq 'z sample)
(A B (C D) B)
Command: (subst 'qq '(c d) sample)
(A B QQ B)
Command: (subst '(qq rr) '(c d) sample)
(A B (QQ RR) B)
Command: (subst '(qq rr) 'z sample)
(A B (C D) B)

When used in conjunction with assoc, subst provides a convenient means of
replacing the value associated with one key in an association list, as
demonstrated by the following function calls.

Set variable who to an association list:
Command: (setq who '((first john) (mid q) (last public)))
((FIRST JOHN) (MID Q) (LAST PUBLIC))

The following sets old to (FIRST JOHN) and new to (FIRST J):
Command: (setq old (assoc 'first who) new '(first j))
(FIRST J)

Finally, replace the value of the first item in the association list:
Command: (subst new old who)
((FIRST J) (MID Q) (LAST PUBLIC))

substr

Returns a substring of a string

(substr
string start [length]

)

200 | Chapter 1 AutoLISP Functions

The substr function starts at the start character position of string and continues
for length characters.

Arguments

string A string.

start A positive integer indicating the starting position in string. The first
character in the string is position 1.

length A positive integer specifying the number of characters to search through
in string. If length is not specified, the substring continues to the end of string.

NOTE The first character of string is character number 1. This differs from other
functions that process elements of a list (like nth and ssname) that count the first
element as 0.

Return Values

A string.

Examples
Command: (substr "abcde" 2)
"bcde"
Command: (substr "abcde" 2 1)
"b"
Command: (substr "abcde" 3 2)
"cd"

T Functions

tblnext

Finds the next item in a symbol table

(tblnext
table-name [rewind]

)

When tblnext is used repeatedly, it normally returns the next entry in the
specified table each time. The tblsearch function can set the next entry to be

AutoLISP Functions | 201

retrieved. If the rewind argument is present and is not nil, the symbol table
is rewound and the first entry in it is retrieved.

Arguments

table-name A string that identifies a symbol table. Valid table-name values are
"LAYER", "LTYPE", "VIEW", "STYLE", "BLOCK", "UCS", "APPID", "DIMSTYLE", and
"VPORT". The argument is not case sensitive.

rewind If this argument is present and is not nil, the symbol table is rewound
and the first entry in it is retrieved.

Return Values

If a symbol table entry is found, the entry is returned as a list of dotted pairs
of DXF-type codes and values. If there are no more entries in the table, nil is
returned. Deleted table entries are never returned.

Examples

Retrieve the first layer in the symbol table:
Command: (tblnext "layer" T)
((0 . "LAYER") (2 . "0") (70 . 0) (62 . 7) (6 . "CONTINUOUS"))

The return values represent the following:

(0 . "LAYER")
Symbol type

(2 . "0")
Symbol name

(70 . 0)
Flags

(62 . 7)
Color number, negative if off

(6 . "CONTINUOUS")
Linetype name

Note that there is no -1 group. The last entry returned from each table is stored,
and the next one is returned each time tblnext is called for that table. When
you begin scanning a table, be sure to supply a non-nil second argument to
rewind the table and to return the first entry.

202 | Chapter 1 AutoLISP Functions

Entries retrieved from the block table include a -2 group with the entity name
of the first entity in the block definition (if any). For example, the following
command obtains information about a block called BOX:
Command: (tblnext "block")
((0 . "BLOCK") (2 . "BOX") (70 . 0) (10 9.0 2.0 0.0) (-2 .
<Entity name: 1dca370>))

The return values represent the following:

(0 . "BLOCK")
Symbol type

(2 . "BOX")
Symbol name

(70 . 0)
Flags

(10 9.0 2.0 0.0)
Origin X,Y,Z

(-2 . <Entity name: 1dca370>)
First entity

The entity name in the -2 group is accepted by entget and entnext, but not
by other entity access functions. For example, you cannot use ssadd to put it
in a selection set. By providing the -2 group entity name to entnext, you can
scan the entities comprising a block definition; entnext returns nil after the
last entity in the block definition.

If a block contains no entities, the -2 group returned by tblnext is the entity
name of its endblk entity.

NOTE The vports function returns current VPORT table information; therefore, it
may be easier to use vports as opposed to tblnext to retrieve this information.

tblobjname

Returns the entity name of a specified symbol table entry

AutoLISP Functions | 203

(tblobjname
table-name symbol

)

Arguments

table-name A string that identifies the symbol table to be searched. The
argument is not case-sensitive.

symbol A string identifying the symbol to be searched for.

Return Values

The entity name of the symbol table entry, if found.

The entity name returned by tblobjname can be used in entget and entmod

operations.

Examples

The following command searches for the entity name of the block entry
“ESC-01”:
Command: (tblobjname "block" "ESC-01")
<Entity name: 1dca368>

tblsearch

Searches a symbol table for a symbol name

(tblsearch
table-name symbol [setnext]

)

Arguments

table-name A string that identifies the symbol table to be searched. This
argument is not case-sensitive.

symbol A string identifying the symbol name to be searched for. This argument
is not case-sensitive.

setnext If this argument is supplied and is not nil, the tblnext entry counter
is adjusted so the following tblnext call returns the entry after the one returned
by this tblsearch call. Otherwise, tblsearch has no effect on the order of
entries retrieved by tblnext.

204 | Chapter 1 AutoLISP Functions

Return Values

If tblsearch finds an entry for the given symbol name, it returns that entry
in the format described for <Undefined Cross-Reference> (page 201). If no entry
is found, tblsearch returns nil.

Examples

The following command searches for a text style named “standard”:
Command: (tblsearch "style" "standard")
((0 . "STYLE") (2 . "STANDARD") (70 . 0) (40 . 0.0) (41 .
1.0) (50 . 0.0) (71 . 0) (42 . 0.3) (3 . "txt") (4 . ""))

terpri

Prints a newline to the command line

(terpri)

The terpri function is not used for file I/O. To write a newline to a file, use
prin1, princ, or print.

Return Values

nil

textbox

Measures a specified text object, and returns the diagonal coordinates of a box
that encloses the text

(textbox
elist

)

Arguments

elist An entity definition list defining a text object, in the format returned by
entget.

If fields that define text parameters other than the text itself are omitted from
elist, the current (or default) settings are used.

AutoLISP Functions | 205

The minimum list accepted by textbox is that of the text itself.

Return Values

A list of two points, if successful; otherwise nil.

The points returned by textbox describe the bounding box of the text object
as if its insertion point is located at (0,0,0) and its rotation angle is 0. The first
list returned is generally the point (0.0 0.0 0.0) unless the text object is oblique
or vertical, or it contains letters with descenders (such as g and p). The value
of the first point list specifies the offset from the text insertion point to the
lower-left corner of the smallest rectangle enclosing the text. The second point
list specifies the upper-right corner of that box. Regardless of the orientation
of the text being measured, the point list returned always describes the
lower-left and upper-right corners of this bounding box.

Examples

The following command supplies the text and accepts the current defaults for
the remaining parameters:
Command: (textbox '((1 . "Hello world.")))
((0.000124126 -0.00823364 0.0) (3.03623 0.310345 0.0))

textpage

Switches focus from the drawing area to the text screen

NOTE This function is supported on Mac OS, but does not affect AutoCAD for
Mac.

(textpage)

The textpage function is equivalent to textscr.

Return Values

nil

textscr

Switches focus from the drawing area to the text screen

206 | Chapter 1 AutoLISP Functions

NOTE This function is supported on Mac OS, but does not affect AutoCAD for
Mac.

(textscr)

Return Values

The textscr function always returns nil.

See also:

The graphscr (page 106) function.

trace

Aids in AutoLISP debugging

(trace
[function

...
]

)

The trace function sets the trace flag for the specified functions. Each time a
specified function is evaluated, a trace display appears showing the entry of
the function (indented to the level of calling depth) and prints the result of
the function.

Use untrace to turn off the trace flag.

Arguments

function A symbol that names a function. If no argument is supplied, trace

has no effect.

Return Values

The last function name passed to trace. If no argument is supplied, trace

returns nil.

Examples

Define a function named foo and set the trace flag for the function:
Command: (defun foo (x) (if (> x 0) (foo (1- x))))

AutoLISP Functions | 207

FOO
Command: (trace foo)
FOO

Invoke foo and observe the results:
Command: (foo 3)
Entering (FOO 3)
Entering (FOO 2)
Entering (FOO 1)
Entering (FOO 0)
Result: nil
Result: nil
Result: nil
Result: nil

Clear the trace flag by invoking untrace:
Command: (untrace foo)
FOO

See also:

The untrace (page 213) function.

trans

Translates a point (or a displacement) from one coordinate system to another

(trans
pt from to [disp]

)

Arguments

pt A list of three reals that can be interpreted as either a 3D point or a 3D
displacement (vector).

from An integer code, entity name, or 3D extrusion vector identifying the
coordinate system in which pt is expressed. The integer code can be one of
the following:

0 World (WCS)

1 User (current UCS)

208 | Chapter 1 AutoLISP Functions

2 If used with code 0 or 1, this indicates the Display Coordinate System (DCS)
of the current viewport. When used with code 3, it indicates the DCS of the
current model space viewport.

3 Paper space DCS (used only with code 2)

to An integer code, entity name, or 3D extrusion vector identifying the
coordinate system of the returned point. See the from argument for a list of
valid integer codes.

disp If present and is not nil, this argument specifies that pt is to be treated
as a 3D displacement rather than as a point.

If you use an entity name for the from or to argument, it must be passed in
the format returned by the entnext, entlast, entsel, nentsel, and ssname

functions. This format lets you translate a point to and from the Object
Coordinate System (OCS) of a particular object. (For some objects, the OCS is
equivalent to the WCS; for these objects, conversion between OCS and WCS
is a null operation.) A 3D extrusion vector (a list of three reals) is another
method of converting to and from an object's OCS. However, this does not
work for those objects whose OCS is equivalent to the WCS.

Return Values

A 3D point (or displacement) in the requested to coordinate system.

Examples

In the following examples, the UCS is rotated 90 degrees counterclockwise
around the WCS Z axis:
Command: (trans '(1.0 2.0 3.0) 0 1)
(2.0 -1.0 3.0)
Command: (trans '(1.0 2.0 3.0) 1 0)
(-2.0 1.0 3.0)

The coordinate systems are discussed in greater detail in Coordinate System
Transformations in the AutoLISP Developer's Guide.

For example, to draw a line from the insertion point of a piece of text (without
using Osnap), you convert the text object's insertion point from the text
object's OCS to the UCS.

(trans
text-insert-point

text-ename

1)

AutoLISP Functions | 209

You can then pass the result to the From Point prompt.

Conversely, you must convert point (or displacement) values to their
destination OCS before feeding them to entmod. For example, if you want to
move a circle (without using the MOVE command) by the UCS-relative offset
(1,2,3), you need to convert the displacement from the UCS to the circle's
OCS:

(trans '(1 2 3) 1 circle-ename)

Then you add the resulting displacement to the circle's center point.

For example, if you have a point entered by the user and want to find out
which end of a line it looks closer to, you convert the user's point from the
UCS to the DCS.

(trans user-point 1 2)

Then you convert each of the line's endpoints from the OCS to the DCS.

(trans endpoint line-ename 2)

From there you can compute the distance between the user's point and each
endpoint of the line (ignoring the Z coordinates) to determine which end
looks closer.

The trans function can also transform 2D points. It does this by setting the
Z coordinate to an appropriate value. The Z component used depends on the
from coordinate system that was specified and on whether the value is to be
converted as a point or as a displacement. If the value is to be converted as a
displacement, the Z value is always 0.0; if the value is to be converted as a
point, the filled-in Z value is determined as shown in the following table:

Converted 2D point Z values

Filled-in Z valueFrom

0.0WCS

Current elevationUCS

0.0OCS

210 | Chapter 1 AutoLISP Functions

Converted 2D point Z values

Filled-in Z valueFrom

Projected to the current construction plane (UCS XY plane + current el-
evation)

DCS

Projected to the current construction plane (UCS XY plane + current el-
evation)

PSDCS

type

Returns the type of a specified item

(type
item

)

Arguments

item A symbol.

Return Values

The data type of item. Items that evaluate to nil (such as unassigned symbols)
return nil. The data type is returned as one of the atoms listed in the following
table:

Data types returned by the type function

DescriptionData type

Entity namesENAME

External ObjectARX applicationsEXRXSUBR

File descriptorsFILE

IntegersINT

AutoLISP Functions | 211

Data types returned by the type function

DescriptionData type

ListsLIST

Function paging tablePAGETB

Selection setsPICKSET

Floating-point numbersREAL

StringsSTR

Internal AutoLISP functions or functions loaded from compiled
FAS files

SUBR

Functions in LISP source files loaded from the AutoCAD for Mac
Command prompt may also appear as SUBR

SymbolsSYM

User-defined functions loaded from LISP source filesUSUBR

Examples

For example, given the following assignments:

(setq a 123 r 3.45 s "Hello!" x '(a b c))
(setq f (open "name" "r"))

then

(type 'a)
returns

SYM (type a)
returns

INT (type f)
returns

FILE (type r)

212 | Chapter 1 AutoLISP Functions

returns

REAL (type s)
returns

STR (type x)
returns

LIST (type +)
returns

SUBR (type nil)
returns

nil

The following code example uses the type function on the argument passed
to it:

(defun isint (a)
(if (= (type a) 'INT)

is

TYPE
integer?

T
yes, return

T nil
no, return

nil))

U Functions

untrace

Clears the trace flag for the specified functions

(untrace
[function

...
]

)

AutoLISP Functions | 213

Arguments

function A symbol that names a function. If function is not specified, untrace

has no effect.

Return Values

The last function name passed to untrace. If function was not specified, untrace

returns nil.

Examples

The following command clears the trace flag for function foo:
Command: (untrace foo)
FOO

V Functions

ver

Returns a string that contains the current AutoLISP version number

(ver)

The ver function can be used to check the compatibility of programs.

Return Values

The string returned takes the following form:

"Visual LISP
version

(
nn

)"

where version is the current version number and nn is a two-letter language
description.

Examples of the two-letter language descriptions are as follows:

(de) German

(en) US/UK

214 | Chapter 1 AutoLISP Functions

(es) Spanish

(fr) French

(it) Italian

Examples
Command: (ver)
"Mac OS Visual LISP 2012 (en)"

vl-acad-defun

Defines an AutoLISP function symbol as an external subroutine

(vl-acad-defun
'symbol

)

Arguments

symbol A symbol identifying a function.

If a function does not have the c: prefix, and you want to be able to invoke
this function from an external ObjectARX application, you can use
vl-acad-defun to make the function accessible.

Return Values

Unspecified.

vl-acad-undefun

Undefines an AutoLISP function symbol so it is no longer available to
ObjectARX applications

(vl-acad-undefun
'symbol

)

Arguments

symbol A symbol identifying a function.

AutoLISP Functions | 215

You can use vl-acad-undefun to undefine a c: function or a function that
was exposed by vl-acad-defun.

Return Values

T if successful; nil if unsuccessful (for example, the function was not defined
in AutoLISP).

vl-bb-ref

Returns the value of a variable from the blackboard namespace

(vl-bb-ref
'variable

)

Arguments

'variable A symbol identifying the variable to be retrieved.

Return Values

The value of the variable named by symbol.

Examples

Set a variable in the blackboard:
Command: (vl-bb-set 'foobar "Root toot toot")
"Root toot toot"

Use vl-bb-ref to retrieve the value of foobar from the blackboard:
Command: (vl-bb-ref 'foobar)
"Root toot toot"

See also:

The vl-bb-set (page 216) function. Sharing Data Between Namespaces in
the AutoLISP Developer's Guide for a description of the blackboard
namespace.

vl-bb-set

Sets a variable in the blackboard namespace

216 | Chapter 1 AutoLISP Functions

(vl-bb-set
'symbol value

)

Arguments

'symbol A symbol naming the variable to be set.

value Any value, except a function.

Return Values

The value you assigned to symbol.

Examples
Command: (vl-bb-set 'foobar "Root toot toot")
"Root toot toot"
Command: (vl-bb-ref 'foobar)
"Root toot toot"

See also:

The vl-bb-ref (page 216) function. Sharing Data Between Namespaces in the
AutoLISP Developer's Guide for a description of the blackboard namespace.

vl-catch-all-apply

Passes a list of arguments to a specified function and traps any exceptions

(vl-catch-all-apply
'

function list

)

Arguments

'function A function. The function argument can be either a symbol identifying
a defun, or a lambda expression.

list A list containing arguments to be passed to the function.

Return Values

AutoLISP Functions | 217

The result of the function call, if successful. If an error occurs,
vl-catch-all-apply returns an error object.

Examples

If the function invoked by vl-catch-all-apply completes successfully, it is the
same as using apply, as the following examples show:

(setq catchit (apply '/ '(50 5)))

10
(setq catchit (vl-catch-all-apply '/ '(50 5)))

10

The benefit of using vl-catch-all-apply is that it allows you to intercept errors
and continue processing. See what happens when you try to divide by zero
using apply:

(setq catchit (apply '/ '(50 0)))

; error: divide by zero

When you use apply, an exception occurs and an error message displays.

Here is the same operation using vl-catch-all-apply:

(setq catchit (vl-catch-all-apply '/ '(50 0)))

#<%catch-all-apply-error%>

The vl-catch-all-apply function traps the error and returns an error object.
Use vl-catch-all-error-message to see the error message contained in the error
object:
(vl-catch-all-error-message catchit)

"divide by zero"

See also:

The *error* (page 82), vl-catch-all-error-p (page 219), and vl-catch-all-error-
message (page 218) functions. The Error Handling in AutoLISP topic in the
AutoLISP Developer's Guide.

vl-catch-all-error-message

Returns a string from an error object

218 | Chapter 1 AutoLISP Functions

(vl-catch-all-error-message
error-obj

)

Arguments

error-obj An error object returned by vl-catch-all-apply.

Return Values

A string containing an error message.

Examples

Divide by zero using vl-catch-all-apply:

(setq catchit (vl-catch-all-apply '/ '(50 0)))

#<%catch-all-apply-error%>

The vl-catch-all-apply function traps the error and returns an error object.
Use vl-catch-all-error-message to see the error message contained in the error
object:

(vl-catch-all-error-message catchit)
"divide by zero"

See also:

The *error* (page 82), vl-catch-all-apply (page 217), and vl-catch-all-error-
p (page 219) functions. The Error Handling in AutoLISP topic in the AutoLISP
Developer's Guide.

vl-catch-all-error-p

Determines whether an argument is an error object returned from
vl-catch-all-apply

(vl-catch-all-error-p
arg

)

Arguments

arg Any argument.

AutoLISP Functions | 219

Return Values

T, if the supplied argument is an error object returned from vl-catch-all-apply;

otherwise nil.

Examples

Divide by zero using vl-catch-all-apply:

(setq catchit (vl-catch-all-apply '/ '(50 0)))

#<%catch-all-apply-error%>

Use vl-catch-all-error-p to determine if the value returned by vl-catch-all-apply

is an error object:

(vl-catch-all-error-p catchit)

T

See also:

The *error* (page 82), vl-catch-all-apply (page 217), and vl-catch-all-error-
message (page 218) functions. The Error Handling in AutoLISP topic in the
AutoLISP Developer's Guide.

vl-cmdf

Executes an AutoCAD for Mac command

Arguments

(vl-cmdf
[arguments]

...)

The vl-cmdf function is similar to the command function, but differs from
command in the way it evaluates the arguments passed to it. The vl-cmdf

function evaluates all the supplied arguments before executing the AutoCAD
for Mac command, and will not execute the AutoCAD for Mac command if
it detects an error during argument evaluation. In contrast, the command

function passes each argument in turn to AutoCAD for Mac, so the command
may be partially executed before an error is detected.

220 | Chapter 1 AutoLISP Functions

If your command call includes a call to another function, vl-cmdf executes
the call before it executes your command, while command executes the call
after it begins executing your command.

Some AutoCAD for Mac commands may work correctly when invoked through
vl-cmdf, while failing when invoked through command. The vl-cmdf function
mainly overcomes the limitation of not being able to use getxxx functions
inside command.

Arguments

arguments AutoCAD for Mac commands and their options.

The arguments to the vl-cmdf function can be strings, reals, integers, or points,
as expected by the prompt sequence of the executed command. A null string
("") is equivalent to pressing Enter on the keyboard. Invoking vl-cmdf with
no argument is equivalent to pressing Esc and cancels most AutoCAD for Mac
commands.

Return Values

T

Examples

The differences between command and vl-cmdf are easier to see if you enter
the following calls at the AutoCAD for Mac Command prompt, rather than
the VLISP Console prompt:
Command: (command "line" (getpoint "point?") '(0 0) "")
line Specify first point: point?
Specify next point or [Undo]:
Command: nil

Using command, the LINE command executes first; then the getpoint function
is called.
Command: (vl-cmdf "line" (getpoint "point?") '(0 0) "")
point?line Specify first point:
Specify next point or [Undo]:
Command: T

Using vl-cmdf, the getpoint function is called first (notice the “point?” prompt
from getpoint); then the LINE command executes.

The following examples show the same commands, but pass an invalid point
list argument to the LINE command. Notice how the results differ:
Command: (command "line" (getpoint "point?") '(0) "")
line Specify first point: point?

AutoLISP Functions | 221

Specify next point or [Undo]:
Command: ERASE nil
Select objects: Specify opposite corner: *Cancel*
0 found

The command function passes each argument in turn to AutoCAD for Mac,
without evaluating the argument, so the invalid point list is undetected.
Command: (vl-cmdf "line" (getpoint "point?") '(0) "")
point?Application ERROR: Invalid entity/point list.
nil

Because vl-cmdf evaluates each argument before passing the command to
AutoCAD for Mac, the invalid point list is detected and the command is not
executed.

See also:

The command (page 42) function.

vl-consp

Determines whether or not a list is nil

(vl-consp
list-variable

)

The vl-consp function determines whether a variable contains a valid list
definition.

Arguments

list-variable A list.

Return Values

T, if list-variable is a list and is not nil; otherwise nil.

Examples

(vl-consp nil)

nil
(vl-consp t)

nil

222 | Chapter 1 AutoLISP Functions

(vl-consp (cons 0 "LINE"))

T

vl-directory-files

Lists all files in a given directory

(vl-directory-files
[directory pattern

directories]

)

Arguments

directory A string naming the directory to collect files for; if nil or absent,
vl-directory-files uses the current directory.

pattern A string containing a pattern for the file name; if nil or absent,
vl-directory-files assumes “*.*”

directories An integer that indicates whether the returned list should include
directory names. Specify one of the following:

-1 List directories only.

0 List files and directories (the default).

1 List files only.

Return Values

A list of file and path names; otherwise nil if no files match the specified
pattern.

Examples

(vl-directory-files "/myutilities/lsp" "*.lsp")

("utilities.lsp" "blk-insert.lsp")
(vl-directory-files "/myutilities" nil -1)

("." ".." ".DS_Store" "Help" "Lsp" "Support")

vl-doc-ref

Retrieves the value of a variable from the current document's namespace

AutoLISP Functions | 223

This function can be used by a separate-namespace VLX application to retrieve
the value of a variable from the current document's namespace.

(vl-doc-ref
'symbol

)

Arguments

'symbol A symbol naming a variable.

Return Values

The value of the variable identified by symbol.

Examples
Command: (vl-doc-ref 'foobar)
"Rinky dinky stinky"

See also:

The vl-doc-set (page 224) function.

vl-doc-set

Sets the value of a variable in the current document's namespace

(vl-doc-set
'symbol value

)

This function can be used by a VLX application to set the value of a variable
that resides in the current document's namespace.

If executed within a document namespace, vl-doc-set is equivalent to set.

Arguments

'symbol A symbol naming a variable.

value Any value.

Return Values

The value set.

Examples

224 | Chapter 1 AutoLISP Functions

Command: (vl-doc-set 'foobar "Rinky dinky stinky")
"Rinky dinky stinky"

See also:

The vl-doc-ref (page 223) function.

vl-every

Checks whether the predicate is true for every element combination

(vl-every
predicate-function

list

[list]

...)

The vl-every function passes the first element of each supplied list as an
argument to the test function, followed by the next element from each list,
and so on. Evaluation stops as soon as one of the lists runs out.

Arguments

predicate-function The test function. This can be any function that accepts as
many arguments as there are lists provided with vl-every, and returns T on
any user-specified condition. The predicate-function value can take one of the
following forms:
■ A symbol (function name)

■ '(LAMBDA (A1 A2) ...)

■ (FUNCTION (LAMBDA (A1 A2) ...))

list A list to be tested.

Return Values

T, if predicate-function returns a non-nil value for every element combination;
otherwise nil.

Examples

Check whether there are any empty files in the current directory:

(vl-every

AutoLISP Functions | 225

'(lambda (fnm) (> (vl-file-size fnm) 0))

 (vl-directory-files nil nil 1))

T

Check whether the list of numbers in NLST is ordered by '<=:

(setq nlst (list 0 2 pi pi 4))

(0 2 3.14159 3.14159 4)
(vl-every '<= nlst (cdr nlst))

T

Compare the results of the following expressions:

(vl-every '= '(1 2) '(1 3))

nil
(vl-every '= '(1 2) '(1 2 3))

T

The first expression returned nil because vl-every compared the second
element in each list and they were not numerically equal. The second
expression returned T because vl-every stopped comparing elements after it
had processed all the elements in the shorter list (1 2), at which point the lists
were numerically equal. If the end of a list is reached, vl-every returns a
non-nil value.

The following example demonstrates the result when vl-every evaluates one
list that contains integer elements and another list that is nil:

(setq alist (list 1 2 3 4))

(1 2 3 4)
(setq junk nil)

nil
(vl-every '= junk alist)

T

The return value is T because vl-every responds to the nil list as if it has
reached the end of the list (even though the predicate hasn't yet been applied
to any elements). And since the end of a list has been reached, vl-every returns
a non-nil value.

226 | Chapter 1 AutoLISP Functions

vl-exit-with-error

Passes control from a VLX error handler to the *error* function of the calling
namespace

(vl-exit-with-error
msg

)

This function is used by VLX applications that run in their own namespace.
When vl-exit-with-error executes, it calls the *error* function, the stack is
unwound, and control returns to a command prompt.

Arguments

msg A string.

Return Values

None.

Examples

The following code illustrates the use of vl-exit-with-error to pass a string to
the *error* function of the calling namespace:

(defun *error* (msg)
... ; processing in VLX namespace/execution context

(vl-exit-with-error (strcat "My application bombed! " msg)))

See also:

The *error* (page 82) and vl-exit-with-value (page 227) functions. The
Handling Errors in an MDI Environment topic in the AutoLISP Developer's
Guide.

vl-exit-with-value

Returns a value to the function that invoked the VLX from another namespace

(vl-exit-with-value
value

)

AutoLISP Functions | 227

A VLX *error* handler can use the vl-exit-with-value function to return a
value to the program that called the VLX.

Arguments

value Any value.

Return Values

value

Examples

The following example uses vl-exit-with-value to return the integer value 3
to the function that invoked the VLX:

(defun *error* (msg)
... ; processing in VLX-T namespace/execution context
(vl-exit-with-value 3))

See also:

The *error* (page 82) and vl-exit-with-error (page 227) functions. The
Handling Errors in an MDI Environment topic in the AutoLISP Developer's
Guide.

vl-file-copy

Copies or appends the contents of one file to another file

(vl-file-copy
source-file

destination-file

[append]

)

Copy or append the contents of one file to another file. The vl-file-copy

function will not overwrite an existing file; it will only append to it.

Arguments

source-file A string naming the file to be copied. If you do not specify a full
path name, vl-file-copy looks in the AutoCAD for Mac default drawing
directory.

228 | Chapter 1 AutoLISP Functions

destination-file A string naming the destination file. If you do not specify a
path name, vl-file-copy writes to the AutoCAD for Mac default drawing
directory.

append If specified and not nil, source-file is appended to destination-file (that
is, copied to the end of the destination file).

Return Values

An integer, if the copy was successful; otherwise nil.

Some typical reasons for returning nil are
■ source-file is not readable

■ source-file is a directory

■ append? is absent or nil and destination-file exists

■ destination-file cannot be opened for output (that is, it is an illegal file name
or a write-protected file)

■ source-file is the same as destination-file

Examples

Copy oldstart.sh to newstart.sh:

(vl-file-copy "/oldstart.sh" "/newstart.sh")

1417

Copy start.sh to newstart.sh:

(vl-file-copy "/start.sh" "/newstart.sh")

nil

The copy fails because newstart.sh already exists, and the append argument was
not specified.

Repeat the previous command, but specify append:

(vl-file-copy "/start.sh" "/newstart.sh" T)

185

The copy is successful because T was specified for the append argument.

vl-file-delete

Deletes a file

AutoLISP Functions | 229

(vl-file-delete
filename

)

Arguments

filename A string containing the name of the file to be deleted. If you do not
specify a full path name, vl-file-delete searches the AutoCAD for Mac default
drawing directory.

Return Values

T if successful; nil if delete failed.

Examples

Delete newstart.sh:

(vl-file-delete "newstart.sh")

nil

Nothing was deleted because there is no newstart.sh file in the AutoCAD for
Mac default drawing directory.

Delete the newstart.sh file in the / <root> directory:

(vl-file-delete "/newstart.sh")

T

The delete was successful because the full path name identified an existing
file.

vl-file-directory-p

Determines if a file name refers to a directory

(vl-file-directory-p
filename

)

Arguments

filename A string containing a file name. If you do not specify a full path name,
vl-file-directory-p searches only the AutoCAD for Mac default drawing
directory.

230 | Chapter 1 AutoLISP Functions

Return Values

T, if filename is the name of a directory; nil if it is not.

Examples

(vl-file-directory-p "support")

T
(vl-file-directory-p "xyz")

nil
(vl-file-directory-p "/documents")

T
(vl-file-directory-p "/documents/output.txt")

nil

vl-file-rename

Renames a file

(vl-file-rename
old-filename

new-filename

)

Arguments

old-filename A string containing the name of the file you want to rename. If
you do not specify a full path name, vl-file-rename looks in the AutoCAD for
Mac default drawing directory.

new-filename A string containing the new name to be assigned to the file.

NOTE If you do not specify a path name, vl-file-rename writes the renamed file
to the AutoCAD for Mac default drawing directory.

Return Values

T, if renaming completed successfully; nil if renaming failed.

Examples

(vl-file-rename "/oldstartup.sh" "/mystartup.sh")

T

AutoLISP Functions | 231

NOTE

If the target file already exists, this function fails.

vl-file-size

Determines the size of a file, in bytes

(vl-file-size
filename

)

Arguments

filename A string naming the file to be sized. If you do not specify a full path
name, vl-file-size searches the AutoCAD for Mac default drawing directory
for the file.

Return Values

If successful, vl-file-size returns an integer showing the size of filename. If the
file is not readable, vl-file-size returns nil. If filename is a directory or an empty
file, vl-file-size returns 0.

Examples

(vl-file-size "/output.txt")

1417
(vl-file-size "/")

0

In the preceding example, vl-file-size returned 0 because c:/ names a directory.

vl-file-systime

Returns last modification time of the specified file

(vl-file-systime
filename

)

232 | Chapter 1 AutoLISP Functions

Arguments

filename A string containing the name of the file to be checked.

Return Values

A list containing the modification date and time; otherwise nil, if the file is
not found.

The list returned contains the following elements:
■ year

■ month

■ day of week

■ day of month

■ hours

■ minutes

■ seconds

Note that Monday is day 1 of day of week, Tuesday is day 2, and so on.

Examples

(vl-file-systime "/output.txt")

(2011 5 4 26 16 3 51 586)

The returned value shows that the file was last modified in 2011, in the 5th
month of the year (May), the 4th day of the week (Thursday), on the 26th
day of the month, at 4:03:51 PM.

vl-filename-base

Returns the name of a file, after stripping out the directory path and extension

(vl-filename-base
filename

)

Arguments

filename A string containing a file name. The vl-filename-base function does
not check to see if the file exists.

Return Values

AutoLISP Functions | 233

A string containing filename in uppercase, with any directory and extension
stripped from the name.

Examples

(vl-filename-base "/myutilities/lsp/utilities.lsp")

"utilities"
(vl-filename-base "/myutilities/support")

"support"

vl-filename-directory

Returns the directory path of a file, after stripping out the name and extension

(vl-filename-directory
filename

)

Arguments

filename A string containing a complete file name, including the path. The
vl-filename-directory function does not check to see if the specified file exists.

Return Values

A string containing the directory portion of filename, in uppercase.

Examples

(vl-filename-directory "/myutilities/support/template.txt")

"/myutilities/support"
(vl-filename-directory "template.txt")

""

vl-filename-extension

Returns the extension from a file name, after stripping out the rest of the
name

(vl-filename-extension
filename

234 | Chapter 1 AutoLISP Functions

)

Arguments

filename A string containing a file name, including the extension. The
vl-filename-extension function does not check to see if the specified file exists.

Return Values

A string containing the extension of filename. The returned string starts with
a period (.) and is in uppercase. If filename does not contain an extension,
vl-filename-extension returns nil.

Examples

(vl-filename-extension "/myutilities/support/output.txt")

".txt"
(vl-filename-extension "/myutilities/support/output")

nil

vl-filename-mktemp

Calculates a unique file name to be used for a temporary file

(vl-filename-mktemp
[pattern

directory

extension]

)

Arguments

pattern A string containing a file name pattern; if nil or absent,
vl-filename-mktemp uses “$VL~~”.

directory A string naming the directory for temporary files; if nil or absent,
vl-filename-mktemp chooses a directory in the following order:

■ The directory specified in pattern, if any.

■ The directory specified by the TEMPPREFIX system variable.

■ The current directory.

AutoLISP Functions | 235

extension A string naming the extension to be assigned to the file; if nil or
absent, vl-filename-mktemp uses the extension part of pattern (which may
be an empty string).

Return Values

A string containing a file name, in the following format:

directory

\
base

<
XXX

><.
extension

>

where:

base is up to 5 characters, taken from pattern

XXX is a 3-character unique combination

All file names generated by vl-filename-mktemp during a session are deleted
when you exit the application.

Examples

(vl-filename-mktemp)

"/documents/$VL~~001"
(vl-filename-mktemp "myapp.del")

"/documents/MYAPP002.DEL"
(vl-filename-mktemp "/myutilities/temp/myapp.del")

"/myutilities/temp/MYAPP003.DEL"
(vl-filename-mktemp "/myutilities/temp/myapp.del")

"/myutilities/temp/MYAPP004.DEL"
(vl-filename-mktemp "myapp" "/myutilities/temp")

"/myutilities/temp/MYAPP005"
(vl-filename-mktemp "myapp" "/myutilities/temp" ".del")

"/myutilities/temp/MYAPP006.DEL"

236 | Chapter 1 AutoLISP Functions

vl-list*

Constructs and returns a list

(vl-list*
object

[object]

...)

Arguments

object Any LISP object.

Return Values

The vl-list* function is similar to list, but it will place the last object in the
final cdr of the result list. If the last argument to vl-list* is an atom, the result
is a dotted list. If the last argument is a list, its elements are appended to all
previous arguments added to the constructed list. The possible return values
from vl-list* are

■ An atom, if a single atom object is specified.

■ A dotted pair, if all object arguments are atoms.

■ A dotted list, if the last argument is an atom and neither of the previous
conditions is true.

■ A list, if none of the previous statements is true.

Examples

(vl-list* 1)

1
(vl-list* 0 "text")

(0 . "TEXT")
(vl-list* 1 2 3)

(1 2 . 3)
(vl-list* 1 2 '(3 4))

(1 2 3 4)

See also:

The list (page 137) function.

AutoLISP Functions | 237

vl-list->string

Combines the characters associated with a list of integers into a string

(vl-list->string
char-codes-list

)

Arguments

char-codes-list A list of non-negative integers. Each integer must be less than
256.

Return Values

A string of characters, with each character based on one of the integers supplied
in char-codes-list.

Examples

(vl-list->string nil)

""
(vl-list->string '(49 50))

"12"

See also:

The vl-string->list (page 254) function.

vl-list-length

Calculates list length of a true list

(vl-list-length
list-or-cons-object

)

Arguments

list-or-cons-object A true or dotted list.

Return Values

238 | Chapter 1 AutoLISP Functions

An integer containing the list length if the argument is a true list; otherwise
nil if list-or-cons-object is a dotted list.

Compatibility note: The vl-list-length function returns nil for a dotted list,
while the corresponding Common LISP function issues an error message if
the argument is a dotted list.

Examples

(vl-list-length nil)

0
(vl-list-length '(1 2))

2
(vl-list-length '(1 2 . 3))

nil

See also:

The listp (page 138) function.

vl-load-all

Loads a file into all open AutoCAD for Mac documents, and into any document
subsequently opened during the current AutoCAD for Mac session

(vl-load-all
filename

)

Arguments

filename A string naming the file to be loaded. If the file is in the AutoCAD
for Mac support file search path, you can omit the path name, but you must
always specify the file extension; vl-load-all does not assume a file type.

Return Values

Unspecified. If filename is not found, vl-load-all issues an error message.

Examples

(vl-load-all "/myutilities/lsp/utilities.lsp")

nil
(vl-load-all "utilities.lsp")

AutoLISP Functions | 239

nil

vl-mkdir

Creates a directory

(vl-mkdir
directoryname

)

Arguments

directoryname The name of the directory you want to create.

Return Values

T if successful, nil if the directory exists or if unsuccessful.

Examples

Create a directory named mydirectory:

(vl-mkdir "/mydirectory”)

T

vl-member-if

Determines if the predicate is true for one of the list members

(vl-member-if
predicate-function

list

)

The vl-member-if function passes each element in list to the function specified
in predicate-function. If predicate-function returns a non-nil value, vl-member-if

returns the rest of the list in the same manner as the member function.

Arguments

240 | Chapter 1 AutoLISP Functions

predicate-function The test function. This can be any function that accepts a
single argument and returns T for any user-specified condition. The
predicate-function value can take one of the following forms:
■ A symbol (function name)

■ '(LAMBDA (A1 A2) ...)

■ (FUNCTION (LAMBDA (A1 A2) ...))

list A list to be tested.

Return Values

A list, starting with the first element that passes the test and containing all
elements following this in the original argument. If none of the elements
passes the test condition, vl-member-if returns nil.

Examples

The following command draws a line:

 (COMMAND "_.LINE" '(0 10) '(30 50) nil)

nil

The following command uses vl-member-if to return association lists describing
an entity, if the entity is a line:

(vl-member-if

'(lambda (x) (= (cdr x) "AcDbLine"))

 (entget (entlast)))

((100 . "AcDbLine") (10 0.0 10.0 0.0) (11 30.0 50.0 0.0)
(210 0.0 0.0 1.0))

See also:

The vl-member-if-not (page 241) function.

vl-member-if-not

Determines if the predicate is nil for one of the list members

(vl-member-if-not
predicate-function

list

AutoLISP Functions | 241

)

The vl-member-if-not function passes each element in list to the function
specified in predicate-function. If the function returns nil, vl-member-if-not

returns the rest of the list in the same manner as the member function.

Arguments

predicate-function The test function. This can be any function that accepts a
single argument and returns T for any user-specified condition. The
predicate-function value can take one of the following forms:
■ A symbol (function name)

■ '(LAMBDA (A1 A2) ...)

■ (FUNCTION (LAMBDA (A1 A2) ...))

list A list to be tested.

Return Values

A list, starting with the first element that fails the test and containing all
elements following this in the original argument. If none of the elements fails
the test condition, vl-member-if-not returns nil.

Examples

(vl-member-if-not 'atom '(1 "Str" (0 . "line") nil t))

((0 . "line") nil T)

See also:

The vl-member-if (page 240) function.

vl-position

Returns the index of the specified list item

(vl-position
symbol list

)

Arguments

symbol Any AutoLISP symbol.

242 | Chapter 1 AutoLISP Functions

list A true list.

Return Values

An integer containing the index position of symbol in list; otherwise nil if
symbol does not exist in the list.

Note that the first list element is index 0, the second element is index 1, and
so on.

Examples

(setq stuff (list "a" "b" "c" "d" "e"))

("a" "b" "c" "d" "e")
(vl-position "c" stuff)

2

vl-prin1-to-string

Returns the string representation of LISP data as if it were output by the prin1
function

(vl-prin1-to-string
data

)

Arguments

data Any AutoLISP data.

Return Values

A string containing the printed representation of data as if displayed by prin1.

Examples

(vl-prin1-to-string "abc")

"\"abc\""
(vl-prin1-to-string "/myutilities")

"\"/myutilities\""
(vl-prin1-to-string 'my-var)

"MY-VAR"

AutoLISP Functions | 243

See also:

The vl-princ-to-string (page 244) function.

vl-princ-to-string

Returns the string representation of LISP data as if it were output by the princ
function

(vl-princ-to-string
data

)

Arguments

data Any AutoLISP data.

Return Values

A string containing the printed representation of data as if displayed by princ.

Examples

(vl-princ-to-string "abc")

"abc"

(vl-princ-to-string "/myutilities")

"/myutilities"

(vl-princ-to-string 'my-var)

"MY-VAR"

See also:

The vl-prin1-to-string (page 243) function.

vl-propagate

Copies the value of a variable into all open document namespaces (and sets
its value in any subsequent drawings opened during the current AutoCAD for
Mac session)

244 | Chapter 1 AutoLISP Functions

(vl-propagate
'symbol

)

Arguments

symbol A symbol naming an AutoLISP variable.

Return Values

Unspecified.

Examples
Command: (vl-propagate 'radius)
nil

vl-registry-delete

Deletes the specified key or value from the Windows registry

(vl-registry-delete
reg-key

[val-name]

)

Arguments

reg-key A string specifying a Windows registry key.

val-name A string containing the value of the reg-key entry.

If val-name is supplied and is not nil, the specified value will be purged from
the registry. If val-name is absent or nil, the function deletes the specified key
and all of its values.

Return Values

T if successful; otherwise nil.

Examples

(vl-registry-write "HKEY_CURRENT_USER\\Test" "" "test data")

"test data"
(vl-registry-read "HKEY_CURRENT_USER\\Test")

"test data"

AutoLISP Functions | 245

(vl-registry-delete "HKEY_CURRENT_USER\\Test")

T

NOTE This function cannot delete a key that has subkeys. To delete a subkey you
must use vl-registry-descendents to enumerate all subkeys and delete all of them.

See also:

The vl-registry-descendents (page 246), vl-registry-read (page 247), and vl-
registry-write (page 247) functions.

vl-registry-descendents

Returns a list of subkeys or value names for the specified registry key

(vl-registry-descendents
reg-key

[val-names]

)

Arguments

reg-key A string specifying a registry key.

val-names A string containing the values for the reg-key entry.

If val-names is supplied and is not nil, the specified value names will be listed
from the registry. If val-name is absent or nil, the function displays all subkeys
of reg-key.

Return Values

A list of strings, if successful; otherwise nil.

Examples

(vl-registry-descendents "HKEY_LOCAL_MACHINE\\SOFTWARE")

("Description" "Program Groups" "ORACLE" "ODBC" "Netscape"
"Microsoft")

See also:

The vl-registry-delete (page 245), vl-registry-read (page 247), and vl-registry-
write (page 247) functions.

246 | Chapter 1 AutoLISP Functions

vl-registry-read

Returns data stored in the registry for the specified key/value pair

(vl-registry-read
reg-key

[val-name]

)

Arguments

reg-key A string specifying a registry key.

val-name A string containing the value of a registry entry.

If val-name is supplied and is not nil, the specified value will be read from
the registry. If val-name is absent or nil,the function reads the specified key
and all of its values.

Return Values

A string containing registry data, if successful; otherwise nil.

Examples

(vl-registry-read "HKEY_CURRENT_USER\\Test")

nil
(vl-registry-write "HKEY_CURRENT_USER\\Test" "" "test data")

"test data"
(vl-registry-read "HKEY_CURRENT_USER\\Test")

"test data"

See also:

The vl-registry-delete (page 245), vl-registry-descendents (page 246), and vl-
registry-write (page 247) functions.

vl-registry-write

Creates a key in the registry

(vl-registry-write

AutoLISP Functions | 247

reg-key

[val-name val-data]

)

Arguments

reg-key A string specifying a registry key.

NOTE You cannot use vl-registry-write for HKEY_USERS or
KEY_LOCAL_MACHINE.

val-name A string containing the value of a registry entry.

val-data A string containing registry data.

If val-name is not supplied or is nil,a default value for the key is written. If
val-name is supplied and val-data is not specified, an empty string is stored.

Return Values

vl-registry-write returns val-data, if successful; otherwise nil.

Examples

(vl-registry-write "HKEY_CURRENT_USER\\Test" "" "test data")

"test data"
(vl-registry-read "HKEY_CURRENT_USER\\Test")

"test data"

See also:

The vl-registry-delete (page 245), dialog box (page 246), and vl-registry-read
(page 247) functions.

vl-remove

Removes elements from a list

(vl-remove
element-to-remove

list

)

Arguments

248 | Chapter 1 AutoLISP Functions

element-to-remove The value of the element to be removed; may be any LISP
data type.

list Any list.

Return Values

The list with all elements except those equal to element-to-remove.

Examples

(vl-remove pi (list pi t 0 "abc"))

(T 0 "abc")

vl-remove-if

Returns all elements of the supplied list that fail the test function

(vl-remove-if
predicate-function

list

)

Arguments

predicate-function The test function. This can be any function that accepts a
single argument and returns T for any user-specified condition. The
predicate-function value can take one of the following forms:
■ A symbol (function name)

■ '(LAMBDA (A1 A2) ...)

■ (FUNCTION (LAMBDA (A1 A2) ...))

list A list to be tested.

Return Values

A list containing all elements of list for which predicate-function returns nil.

Examples

(vl-remove-if 'vl-symbolp (list pi t 0 "abc"))

(3.14159 0 "abc")

AutoLISP Functions | 249

vl-remove-if-not

Returns all elements of the supplied list that pass the test function

(vl-remove-if-not
predicate-function

list

)

Arguments

predicate-function The test function. This can be any function that accepts a
single argument and returns T for any user-specified condition. The
predicate-function value can take one of the following forms:
■ A symbol (function name)

■ '(LAMBDA (A1 A2) ...)

■ (FUNCTION (LAMBDA (A1 A2) ...))

list A list to be tested.

Return Values

A list containing all elements of list for which predicate-function returns a
non-nil value

Examples

(vl-remove-if-not 'vl-symbolp (list pi t 0 "abc"))

(T)

vl-some

Checks whether the predicate is not nil for one element combination

(vl-some
predicate-function

list

[list]

...)

Arguments

250 | Chapter 1 AutoLISP Functions

predicate-function The test function. This can be any function that accepts as
many arguments as there are lists provided with vl-some, and returns T on a
user-specified condition. The predicate-function value can take one of the
following forms:
■ A symbol (function name)

■ '(LAMBDA (A1 A2) ...)

■ (FUNCTION (LAMBDA (A1 A2) ...))

list A list to be tested.

The vl-some function passes the first element of each supplied list as an
argument to the test function, then the next element from each list, and so
on. Evaluation stops as soon as the predicate function returns a non-nil value
for an argument combination, or until all elements have been processed in
one of the lists.

Return Values

The predicate value, if predicate-function returned a value other than nil;
otherwise nil.

Examples

The following example checks whether nlst (a number list) has equal elements
in sequence:

(setq nlst (list 0 2 pi pi 4))

(0 2 3.14159 3.14159 4)
(vl-some '= nlst (cdr nlst))

T

vl-sort

Sorts the elements in a list according to a given compare function

(vl-sort
list

comparison-function

)

Arguments

AutoLISP Functions | 251

list Any list.

comparison-function A comparison function. This can be any function that
accepts two arguments and returns T (or any non-nil value) if the first
argument precedes the second in the sort order. The comparison-function value
can take one of the following forms:
■ A symbol (function name)

■ '(LAMBDA (A1 A2) ...)

■ (FUNCTION (LAMBDA (A1 A2) ...))

Return Values

A list containing the elements of list in the order specified by
comparison-function. Duplicate elements may be eliminated from the list.

Examples

Sort a list of numbers:

(vl-sort '(3 2 1 3) '<)

(1 2 3) ;

Note that the result list contains only one 3.

Sort a list of 2D points by Y coordinate:

_$
 (vl-sort '((1 3) (2 2) (3 1))

 (function (lambda (e1 e2)

 (< (cadr e1) (cadr e2)))))

((3 1) (2 2) (1 3))

Sort a list of symbols:

_$
(vl-sort

 '(a d c b a)

 '(lambda (s1 s2)

 (< (vl-symbol-name s1) (vl-symbol-name s2))))

(A B C D) ; Note that only one A remains in the result
list

252 | Chapter 1 AutoLISP Functions

vl-sort-i

Sorts the elements in a list according to a given compare function, and returns
the element index numbers

(vl-sort-i list
comparison-function

)

Arguments

list Any list.

comparison-function A comparison function. This can be any function that
accepts two arguments and returns T (or any non-nil value) if the first
argument precedes the second in the sort order. The comparison-function value
can take one of the following forms:
■ A symbol (function name)

■ '(LAMBDA (A1 A2) ...)

■ (FUNCTION (LAMBDA (A1 A2) ...))

Return Values

A list containing the index values of the elements of list, sorted in the order
specified by comparison-function. Duplicate elements will be retained in the
result.

Examples

Sort a list of characters in descending order:

(vl-sort-i '("a" "d" "f" "c") '>)

(2 1 3 0)

The sorted list order is “f” “d” “c” “a”; “f” is the 3rd element (index 2) in the
original list, “d” is the 2nd element (index 1) in the list, and so on.

Sort a list of numbers in ascending order:

(vl-sort-i '(3 2 1 3) '<)

(2 1 3 0)

Note that both occurrences of 3 are accounted for in the result list.

Sort a list of 2D points by Y coordinate:

AutoLISP Functions | 253

(vl-sort-i '((1 3) (2 2) (3 1))

 (function (lambda (e1 e2)

 (< (cadr e1) (cadr e2)))))

(2 1 0)

Sort a list of symbols:

(vl-sort-i

 '(a d c b a)

 '(lambda (s1 s2)

 (< (vl-symbol-name s1) (vl-symbol-name s2))))

(4 0 3 2 1)

Note that both a's are accounted for in the result list.

vl-string->list

Converts a string into a list of character codes

(vl-string->list
string

)

Arguments

string A string.

Return Values

A list, each element of which is an integer representing the character code of
the corresponding character in string.

Examples

(vl-string->list "")

nil
(vl-string->list "12")

(49 50)

See also:

The vl-list->string (page 238) function.

254 | Chapter 1 AutoLISP Functions

vl-string-elt

Returns the ASCII representation of the character at a specified position in a
string

(vl-string-elt
string position

)

Arguments

string A string to be inspected.

position A displacement in the string; the first character is displacement 0.
Note that an error occurs if position is outside the range of the string.

Return Values

An integer denoting the ASCII representation of the character at the specified
position.

Examples

(vl-string-elt "May the Force be with you" 8)

70

vl-string-left-trim

Removes the specified characters from the beginning of a string

(vl-string-left-trim
character-set

string

)

Arguments

character-set A string listing the characters to be removed.

string The string to be stripped of character-set.

Return Values

A string containing a substring of string with all leading characters in
character-set removed

AutoLISP Functions | 255

Examples

(vl-string-left-trim " \t\n" "\n\t STR ")

"STR "
(vl-string-left-trim "12456789" "12463CPO is not R2D2")

"3CPO is not R2D2"
(vl-string-left-trim " " " There are too many spaces here")

"There are too many spaces here"

vl-string-mismatch

Returns the length of the longest common prefix for two strings, starting at
specified positions

(vl-string-mismatch
str1

str2

[pos1

pos2

ignore-case-p]

)

Arguments

str1 The first string to be matched.

str2 The second string to be matched.

pos1 An integer identifying the position to search from in the first string; 0 if
omitted.

pos2 An integer identifying the position to search from in the second string;
0 if omitted.

ignore-case-p If T is specified for this argument, case is ignored; otherwise, case
is considered.

Return Values

An integer.

Examples

(vl-string-mismatch "VL-FUN" "VL-VAR")

256 | Chapter 1 AutoLISP Functions

3
(vl-string-mismatch "vl-fun" "avl-var")

0
(vl-string-mismatch "vl-fun" "avl-var" 0 1)

3
(vl-string-mismatch "VL-FUN" "Vl-vAR")

1
(vl-string-mismatch "VL-FUN" "Vl-vAR" 0 0 T)

3

vl-string-position

Looks for a character with the specified ASCII code in a string

(vl-string-position
char-code

str

[start-pos

[from-end-p]]

)

Arguments

char-code The integer representation of the character to be searched.

str The string to be searched.

start-pos The position to begin searching from in the string (first character is
0); 0 if omitted.

from-end-p If T is specified for this argument, the search begins at the end of
the string and continues backward to pos.

Return Values

An integer representing the displacement at which char-code was found from
the beginning of the string; nil if the character was not found.

Examples

(vl-string-position (ascii "z") "azbdc")

1

AutoLISP Functions | 257

(vl-string-position 122 "azbzc")

1
(vl-string-position (ascii "x") "azbzc")

nil

The search string used in the following example contains two “z” characters.
Reading from left to right, with the first character being displacement 0, there
is one z at displacement 1 and another z at displacement 3:

(vl-string-position (ascii "z") "azbzlmnqc")

1

Searching from left to right (the default), the “z” in position 1 is the first one
vl-string-position encounters. But when searching from right to left, as in the
following example, the “z” in position 3 is the first one encountered:

(vl-string-position (ascii "z") "azbzlmnqc" nil t)

3

vl-string-right-trim

Removes the specified characters from the end of a string

(vl-string-right-trim
character-set

string

)

Arguments

character-set A string listing the characters to be removed.

string The string to be stripped of character-set.

Return Values

A string containing a substring of string with all trailing characters in
character-set removed.

Examples

(vl-string-right-trim " \t\n" " STR \n\t ")

" STR"
(vl-string-right-trim "1356789" "3CPO is not R2D267891")

258 | Chapter 1 AutoLISP Functions

"3CPO is not R2D2"
(vl-string-right-trim " " "There are too many spaces here ")

"There are too many spaces here"

vl-string-search

Searches for the specified pattern in a string

(vl-string-search
pattern

string

[start-pos]

)

Arguments

pattern A string containing the pattern to be searched for.

string The string to be searched for pattern.

start-pos An integer identifying the starting position of the search; 0 if omitted.

Return Values

An integer representing the position in the string where the specified pattern
was found; otherwise nil if the pattern is not found; the first character of the
string is position 0.

Examples

(vl-string-search "foo" "pfooyey on you")

1
(vl-string-search "who" "pfooyey on you")

nil
(vl-string-search "foo" "fooey-more-fooey" 1)

11

vl-string-subst

Substitutes one string for another, within a string

AutoLISP Functions | 259

(vl-string-subst
new-str

pattern

string

[start-pos]

)

Arguments

new-str The string to be substituted for pattern.

pattern A string containing the pattern to be replaced.

string The string to be searched for pattern.

start-pos An integer identifying the starting position of the search; 0 if omitted.

Note that the search is case-sensitive, and that vl-string-subst substitutes only
the first occurrence it finds of the string.

Return Values

The value of string after any substitutions have been made.

Examples

Replace the string “Ben” with “Obi-wan”:

(vl-string-subst "Obi-wan" "Ben" "Ben Kenobi")

"Obi-wan Kenobi"

Replace “Ben” with “Obi-wan”:

(vl-string-subst "Obi-wan" "Ben" "ben Kenobi")

"ben Kenobi"

Nothing was substituted because vl-string-subst did not find a match for
“Ben”; the “ben” in the string that was searched begins with a lowercase “b”.

Replace “Ben” with “Obi-wan”:

(vl-string-subst "Obi-wan" "Ben" "Ben Kenobi Ben")

"Obi-wan Kenobi Ben"

Note that there are two occurrences of “Ben” in the string that was searched,
but vl-string-subst replaces only the first occurrence.

260 | Chapter 1 AutoLISP Functions

Replace “Ben” with “Obi-wan,” but start the search at the fourth character in
the string:

(vl-string-subst "Obi-wan" "Ben" "Ben \"Ben\" Kenobi" 3)

"Ben \"Obi-wan\" Kenobi"

There are two occurrences of “Ben” in the string that was searched, but because
vl-string-subst was instructed to begin searching at the fourth character, it
found and replaced the second occurrence, not the first.

vl-string-translate

Replaces characters in a string with a specified set of characters

(vl-string-translate
source-set

dest-set

str

)

Arguments

source-set A string of characters to be matched.

dest-set A string of characters to be substituted for those in source-set.

str A string to be searched and translated.

Return Values

The value of str after any substitutions have been made

Examples

(vl-string-translate "abcABC" "123123" "A is a, B is b, C is C")

"1 is 1, 2 is 2, 3 is 3"
(vl-string-translate "abc" "123" "A is a, B is b, C is C")

"A is 1, B is 2, C is 3"

vl-string-trim

Removes the specified characters from the beginning and end of a string

AutoLISP Functions | 261

(vl-string-trim
char-set

str

)

Arguments

char-set A string listing the characters to be removed.

str The string to be trimmed of char-set.

Return Values

The value of str, after any characters have been trimmed.

Examples

(vl-string-trim " \t\n" " \t\n STR \n\t ")

"STR"
(vl-string-trim "this is junk" "this is junk Don't call this junk!
 this is junk")

"Don't call this junk!"
(vl-string-trim " " " Leave me alone ")

"Leave me alone"

vl-symbol-name

Returns a string containing the name of a symbol

(vl-symbol-name
symbol

)

Arguments

symbol Any LISP symbol.

Return Values

A string containing the name of the supplied symbol argument, in uppercase.

Examples

(vl-symbol-name 'S::STARTUP)

262 | Chapter 1 AutoLISP Functions

"S::STARTUP"
(progn (setq sym 'my-var) (vl-symbol-name sym))

"MY-VAR"
(vl-symbol-name 1)

; *** ERROR: bad argument type: symbolp 1

vl-symbol-value

Returns the current value bound to a symbol

(vl-symbol-value
symbol

)

This function is equivalent to the eval function, but does not call the LISP
evaluator.

Arguments

symbol Any LISP symbol.

Return Values

The value of symbol, after evaluation.

Examples

(vl-symbol-value 't)

T
(vl-symbol-value 'PI)

3.14159
(progn (setq sym 'PAUSE) (vl-symbol-value sym))

"\\"

vl-symbolp

Identifies whether or not a specified object is a symbol

Arguments

(vl-symbolp

AutoLISP Functions | 263

object

)

object Any LISP object.

Return Values

T if object is a symbol; otherwise nil.

Examples

(vl-symbolp t)

T
(vl-symbolp nil)

nil
(vl-symbolp 1)

nil
(vl-symbolp (list 1))

nil

vports

Returns a list of viewport descriptors for the current viewport configuration

(vports)

Return Values

One or more viewport descriptor lists consisting of the viewport identification
number and the coordinates of the viewport's lower-left and upper-right
corners.

If the AutoCAD for Mac TILEMODE system variable is set to 1 (on), the returned
list describes the viewport configuration created with the AutoCAD for Mac
VPORTS command. The corners of the viewports are expressed in values
between 0.0 and 1.0, with (0.0, 0.0) representing the lower-left corner of the
display screen's graphics area, and (1.0, 1.0) the upper-right corner. If
TILEMODE is 0 (off), the returned list describes the viewport objects created
with the MVIEWcommand. The viewport object corners are expressed in paper
space coordinates. Viewport number 1 is always paper space when TILEMODE
is off.

Examples

264 | Chapter 1 AutoLISP Functions

Given a single-viewport configuration with TILEMODE on, the vports function
might return the following:

((1 (0.0 0.0) (1.0 1.0)))

Given four equal-sized viewports located in the four corners of the screen
when TILEMODE is on, the vports function might return the following lists:

((5 (0.5 0.0) (1.0 0.5))
(2 (0.5 0.5) (1.0 1.0))
(3 (0.0 0.5) (0.5 1.0))
(4 (0.0 0.0) (0.5 0.5)))

The current viewport's descriptor is always first in the list. In the previous
example, viewport number 5 is the current viewport.

W Functions

wcmatch

Performs a wild-card pattern match on a string

(wcmatch
string pattern

)

Arguments

string A string to be compared. The comparison is case-sensitive, so uppercase
and lowercase characters must match.

pattern A string containing the pattern to match against string. The pattern can
contain the wild-card pattern-matching characters shown in the table Wild-card
characters. You can use commas in a pattern to enter more than one pattern
condition. Only the first 500 characters (approximately) of the string and
pattern are compared; anything beyond that is ignored.

Both arguments can be either a quoted string or a string variable. It is valid
to use variables and values returned from AutoLISP functions for string and
pattern values.

Return Values

AutoLISP Functions | 265

If string and pattern match, wcmatch returns T; otherwise, wcmatch returns
nil.

Wild-card characters

DefinitionCharacter

Matches any single numeric digit.# (pound)

Matches any single alphabetic character.@ (at)

Matches any single nonalphanumeric character.. (period)

Matches any character sequence, including an empty one,
and it can be used anywhere in the search pattern: at the
beginning, middle, or end.

* (asterisk)

Matches any single character.? (question mark)

If it is the first character in the pattern, it matches anything
except the pattern.

~ (tilde)

Matches any one of the characters enclosed.[...]

Matches any single character not enclosed.[~...]

Used inside brackets to specify a range for a single character.- (hyphen)

Separates two patterns., (comma)

Escapes special characters (reads next character literally).` (reverse quote)

Examples

The following command tests a string to see if it begins with the character N:
Command: (wcmatch "Name" "N*")
T

266 | Chapter 1 AutoLISP Functions

The following example performs three comparisons. If any of the three pattern
conditions is met, wcmatch returns T. The tests are:

■ Does the string contain three characters?

■ Does the string not contain an m?

■ Does the string begin with the letter “N”?

If any of the three pattern conditions is met, wcmatch returns T:
Command: (wcmatch "Name" "???,~*m*,N*")
T

In this example, the last condition was met, so wcmatch returned T.

Using Escape Characters with wcmatch

To test for a wild-card character in a string, you can use the single reverse-quote
character (`) to escape the character. Escape means that the character following
the single reverse quote is not read as a wild-card character; it is compared at
its face value. For example, to search for a comma anywhere in the string
“Name”, enter the following:
Command: (wcmatch "Name" "*`,*")
nil

Both the C and AutoLISP programming languages use the backslash (\) as an
escape character, so you need two backslashes (\\) to produce one backslash
in a string. To test for a backslash character anywhere in “Name”, use the
following function call:
Command: (wcmatch "Name" "*`*")
nil

All characters enclosed in brackets ([. . .]) are read literally, so there is no
need to escape them, with the following exceptions: the tilde character (~) is
read literally only when it is not the first bracketed character (as in "[A~BC]");
otherwise, it is read as the negation character, meaning that wcmatch should
match all characters except those following the tilde (as in "[~ABC]"). The
dash character (-) is read literally only when it is the first or last bracketed
character (as in "[-ABC]" or "[ABC-]") or when it follows a leading tilde (as
in "[~-ABC]"). Otherwise, the dash character (-) is used within brackets to
specify a range of values for a specific character. The range works only for
single characters, so "STR[1-38]" matches STR1, STR2, STR3, and STR8, and
"[A-Z]" matches any single uppercase letter.

The closing bracket character (]) is also read literally if it is the first bracketed
character or if it follows a leading tilde (as in "[]ABC]" or "[~]ABC]").

AutoLISP Functions | 267

NOTE

Because additional wild-card characters might be added in future releases of
AutoLISP, it is a good idea to escape all nonalphanumeric characters in your
pattern to ensure upward compatibility.

while

Evaluates a test expression, and if it is not nil, evaluates other expressions;
repeats this process until the test expression evaluates to nil

(while
testexpr [expr

...
]

)

The while function continues until testexpr is nil.

Arguments

testexpr The expression containing the test condition.

expr One or more expressions to be evaluated until testexpr is nil.

Return Values

The most recent value of the last expr.

Examples

The following code calls user function some-func ten times, with test set to
1 through 10. It then returns 11, which is the value of the last expression
evaluated:

(setq test 1)
(while (<= test 10)
(some-func test)
(setq test (1+ test))

)

268 | Chapter 1 AutoLISP Functions

write-char

Writes one character to the screen or to an open file

(write-char
num [file-desc]

)

Arguments

num The decimal ASCII code for the character to be written.

file-desc A file descriptor for an open file.

Return Values

The num argument.

Examples

The following command writes the letter C to the command window, and
returns the supplied num argument:
Command: (write-char 67)
C67

Assuming that f is the descriptor for an open file, the following command
writes the letter C to that file:
Command: (write-char 67 f)
67

Note that write-char cannot write a NULL character (ASCII code 0) to a file.

write-line

Writes a string to the screen or to an open file

(write-line
string [file-desc]

)

Arguments

string A string.

file-desc A file descriptor for an open file.

AutoLISP Functions | 269

Return Values

The string, quoted in the normal manner. The quotes are omitted when writing
to a file.

Examples

Open a new file:
Command: (setq f (open "/documents/new.txt" "w"))
#<file "/documents/new.txt">

Use write-line to write a line to the file:
Command: (write-line "To boldly go where nomad has gone before."
f)
"To boldly go where nomad has gone before."

The line is not physically written until you close the file:
Command: (close f)
nil

X Functions

xdroom

Returns the amount of extended data (xdata) space that is available for an
object (entity)

(xdroom
ename

)

Because there is a limit (currently, 16 kilobytes) on the amount of extended
data that can be assigned to an entity definition, and because multiple
applications can append extended data to the same entity, this function is
provided so an application can verify there is room for the extended data that
it will append. It can be called in conjunction with xdsize, which returns the
size of an extended data list.

Arguments

ename An entity name (ename data type).

Return Values

270 | Chapter 1 AutoLISP Functions

An integer reflecting the number of bytes of available space. If unsuccessful,
xdroom returns nil.

Examples

The following example looks up the available space for extended data of a
viewport object:
Command: (xdroom vpname)
16162

In this example, 16,162 bytes of the original 16,383 bytes of extended data
space are available, meaning that 221 bytes are used.

xdsize

Returns the size (in bytes) that a list occupies when it is linked to an object
(entity) as extended data

(xdsize
lst

)

Arguments

lst A valid list of extended data that contains an application name previously
registered with the use of the regapp function. See the Examples (page 271)
section of this function for lst examples.

Return Values

An integer reflecting the size, in bytes. If unsuccessful, xdsize returns nil.

Brace fields (group code 1002) must be balanced. An invalid lst generates an
error and places the appropriate error code in the ERRNO variable. If the
extended data contains an unregistered application name, you see this error
message (assuming that CMDECHO is on):
Invalid application name in 1001 group

Examples

The lst can start with a -3 group code (the extended data sentinel), but it is
not required. Because extended data can contain information from multiple
applications, the list must have a set of enclosing parentheses.

(-3 ("MYAPP" (1000 . "SUITOFARMOR")

AutoLISP Functions | 271

(1002 . "{")
(1040 . 0.0)
(1040 . 1.0)
(1002 . "}")

)
)

Here is the same example without the -3 group code. This list is just the cdr

of the first example, but it is important that the enclosing parentheses are
included:

(("MYAPP" (1000 . "SUITOFARMOR")
(1002 . "{")
(1040 . 0.0)
(1040 . 1.0)
(1002 . "}")

)
)

Z Functions

zerop

Verifies that a number evaluates to zero

(zerop
number

)

Arguments

number A number.

Return Values

T if number evaluates to zero; otherwise nil.

Examples
Command: (zerop 0)
T
Command: (zerop 0.0)
T

272 | Chapter 1 AutoLISP Functions

Command: (zerop 0.0001)
nil

AutoLISP Functions | 273

274

Externally Defined
Commands

Externally Defined Commands
AutoCAD for Mac

®
 commands defined by ObjectARX

®
 or AutoLISP

®
 applications

are called externally defined. AutoLISP applications may need to access externally
defined commands differently from the way they access built-in AutoLISP
functions. Many externally defined commands have their own programming
interfaces that allow AutoLISP applications to take advantage of their
functionality.

For additional information on the commands described in this appendix, see
the Command Reference.

align

Translates and rotates objects, allowing them to be aligned with other objects.

NOTE The Geom3d ObjectARX application must be loaded before the function can
be called, (arxload "geom3d").

(align
arg1 arg2 ...

)

Arguments

arg1 arg2... Arguments to the AutoCAD for Mac ALIGN command. The order,
number, and type of arguments for the align function are the same as if you
were entering ALIGN at the command line.

2

275

To indicate a null response (a user pressing Enter), specify nil or an empty
string ("").

Return Values

T if successful; otherwise nil.

Examples

The following example specifies two pairs of source and destination points,
which perform a 2D move:

(setq ss (ssget))
(align ss s1 d1 s2 d2 "" "2d")

cal

Invokes the on-line geometry calculator and returns the value of the evaluated expression (externally
defined: geomcal ObjectARX application)

(c:cal
expression

)

Arguments

expression A quoted string. See CAL in the Command Reference for a description
of allowable expressions.

Return Values

The result of the expression.

Examples

The following example uses cal in an AutoLISP expression with the trans

function:

(trans (c:cal "[1,2,3]+MID") 1 2)

276 | Chapter 2 Externally Defined Commands

mirror3d

Reflects selected objects about a user-specified plane.

NOTE The Geom3d ObjectARX application must be loaded before the function
can be called, (arxload "geom3d").

(mirror3d
arg1 arg2 ...

)

Arguments

The order, number, and type of arguments for the mirror3d function are the
same as if you were entering the MIRROR3D AutoCAD for Mac command. To
signify a user pressing Enter without typing any values, use nil or an empty
string ("").

Return Values

T if successfu;, otherwise nil.

Examples

The following example mirrors the selected objects about the XY plane that
passes through the point 0,0,5, and then deletes the old objects:

(setq ss (ssget))
(mirror3d ss "XY" '(0 0 5) "Y")

rotate3d

Rotates an object about an arbitrary 3D axis.

NOTE The Geom3d ObjectARX application must be loaded before the function
can be called, (arxload "geom3d").

(rotate3d
args ...
)

Arguments

Externally Defined Commands | 277

args The order, number, and type of arguments for the rotate3d function are
the same as if you were entering them at the command line; see ROTATE3D
in the Command Reference.

To signify a null response (user pressing Enter without specifying any
arguments), use nil or an empty string ("").

Return Values

If successful, rotate3d returns T; otherwise it returns nil.

Examples

The following example rotates the selected objects 30 degrees about the axis
specified by points p1 and p2.

(setq ss (ssget))
(rotate3d ss p1 p2 30)

AutoLISP support for the rotate3d function is implemented with the use of
the SAGET library.

solprof

Creates profile images of three-dimensional solids.

NOTE The AcSolids ObjectARX application must be loaded before the function
can be called, (arxload "acsolids").

(c:solprof
args ...

)

Arguments

args The order, number, and type of arguments are the same as those specified
when issuing SOLPROF at the Command prompt.

278 | Chapter 2 Externally Defined Commands

Index

- (subtract) 2
* (multiply) 3
/ (divide) 4
/= (not equal to) 6
+ (add) 1

7
8

= (equal to) 5
> (greater than) 9
>= (greater than or equal to) 9
~ (bitwise NOT) 10

1- (decrement) 12
1+ (increment) 11
3D distance

between points 62
specifying 95

3D Object Snap mode 157
3D points

angles, specifying 157
in user coordinate system 157

A

absolute values 12
acad-pop-dbmod function 13
acad-push-dbmod function 13
acad.cfg, AppData section 93, 173
acapp.arx file 13, 14
accessing files with AutoLISP 155
acet-layerp-mark function 19
acet-layerp-mode function 18
add operator 1
add, layerstate 128
addlayers 128
ALIGN command 275
allocating memory 21, 85
AND, list of integers 141
ANGBASE system variable 178
angles

converting from string to radian 23

converting to strings 24
defined by two endpoints 22
in radians 101
measured in radians 91
measuring cosine in radians 50
sine of 179
user input of 91

anonymous functions, defining 126
antilogarithms, and real numbers 84
appending lists 25
application-handling functions,

ObjectARX 26
application-specific data

from acad.cfg file, retrieving 93
writing to the AppData section of

acad.cfg 173
applications

AppData section of acad.cfg 173
forcing to quit 163
loading ObjectARX 27
naming 168
ObjectARX, listing 26
quitting 84
registering 168
starting Windows applications 196
unloading ObjectARX 28
using extended data 168

arctangents, measured in radians 30
arguments, passing to functions 217
ARX applications. See ObjectARX

applications 26
ASCII character codes

converting first character 28
converting to single characters 41
from keyboard input buffer 165
in open files 165
representing characters 255

association lists 29
associative dimensions 17
atoms 32

and dotted lists 237
first in a string, converting 164

279 | Index

verifying 32
AutoCAD commands

executing 42, 220
retrieving localized names of 94

AutoCAD graphics screen 106
AutoCAD status line, writing text to 110
AutoLISP data, displaying as output from

prin1/princ 243
automatic loading

of AutoLISP files 34
of ObjectARX files 34

B

backslash, control codes (table) 160
base points, specifying distance 95
bits, specifying to shift integers 142
bitwise Boolean functions 35
bitwise NOT operator 10
blackboard namespace

returning variable value from 216
setting variables 216

block references
attributes, selecting 150
definition data 149
selecting 149
with attributes

changing 79
updating screen image 79

blocks
nested 150

Boolean bitwise functions 35
built-in functions 52
bytes, for file size 232

C

case conversions 197
character codes

ASCII. See ASCII character codes 28
converting from strings 254
list 238

characters
converting case of 197
quantity in strings 198

closing
applications, forced quit 84
files 41

color selection dialog box,
displaying 15, 16

command line
printing expressions to 158, 160,

161
printing newlines to 205

commands
ALIGN 275
CAL 276
English name in AutoCAD 94
executing in AutoCAD 42, 220
localized name in AutoCAD 94
MIRROR3D 277
ROTATE3D 277
SOLPROF 278

common denominators, finding
greatest 91

compare 129
compare, layerstate 129
comparison function

in lists 251, 253
complex objects, accessing definition

data 149, 151
concatenating

expressions into lists 137
lists 25
multiple strings 198

conditional functions, primary 48
conditionally evaluating expressions 115
converting

angles to radians 23
case of alphabetic characters 197
expressions 164
floating point to real values 63
integers to strings 125
numbers 87
numbers to strings 171
strings

to integers 31
to real numbers 31

values, to other units of
measurement 51

280 | Index

coordinate systems
transforming 150
translating points 208

coordinates, in text boxes 205
corners, user input for rectangles 94
cosine of angles 50

D

data types (list) 211
DBMOD system variable

restoring value stored with
acad-push-dbmod 13

storing current value 13
debugging

trace function 207
untrace function 213

decrement operator 12
decrementing numbers 12
defining function symbols as external

subroutines 215
definition data

modifying 73
of complex objects 149, 151
retrieving 68

definitions, retrieving data for objects 68
defun-q, displaying defined function 54
delete, layerstate 130
deleting

entities 67
files 229
objects 67, 184

delimiters, in multiple expressions 164
dialog boxes

color selection 15, 16
for error messages 20
for file selection 97
forcing display of 117
warning message 20

dictionaries
accessing objects 149
adding nongraphical objects 56
finding next item 58
named object 149
removing entries 59
renaming entries 60

searching items 61
DIESEL menu expressions 147
dimensions

associative 17
directories

file names referring to 230
listing all files 223
using path names 230

displacements, translating 208
distance

between points 62
pausing for user input of 95
specifying points 95

divide operator 4
division, determining remainders 168
dotted lists

and atoms 237
constructing 49

drawings
last nondeleted object 69
paper space layouts 127

dynamic memory 145

E

editor reactors
See also reactors 76

elements
adding to beginning of list 49
all but first of a list 40
first of a list 39
indexed 190
last in a list 127
nth element of lists 153
quantity in lists 136
removing from lists 248
reversing in lists 170
second of a list 39
supplying as arguments for lists 143
third of a list 38

end-of-line markers, open files 166
endpoints

angle returned from 22
entities

adding to selection sets 183
assigning handles 72

Index | 281

complex 149
creating 72

in drawings 70
selection sets 185

deleting 67
from selection sets 184

extended data 168
gripping 194
handles and 72, 114
identifying symbols 263
in selection sets 190
last nondeleted 69
linking as extended data 271
modifying definition data 73
naming 69, 72, 75
nested 79
nongraphical, accessing 149
number in selection set 189
restoring deleted entities 67
retrieving definition data 68
returning next drawing entity 75
searching in symbol tables 203
selecting 77, 149
selecting for set 194
undeleting 67
updating on screen 78

environment variables
defined 96
returning value of 96
setting values for 174
spelling requirements for 174

equal to operator 5
equality between expressions 5, 80, 81
error handling

user-defined function 82
VLX applications 227

error messages
displaying in dialog boxes 20
for quitting applications 163
in error objects 218
user-defined 82

error objects
returned from

vl-catch-all-apply 217, 219
viewing error messages in 218

error trapping 217

evaluating expressions 83, 139
conditionally (if...) 115
for all members of a list 88
no evaluation 163
repetition specified 169
repetitively 268
sequentially 161
using EVAL function 83

evaluating lists, primary condition 48
executing AutoCAD commands 42
expand function, setting segment size

for 21
exponents, specifying power 86
export, layerstate 130
expressions

concatenating 137
determining whether equal 81
determining whether identical 80
evaluating 139

a specified number of times 169
for all members of a list 88
repetitively 268
sequentially 161
with if 115

last evaluated 161
printing to command line 158,

160, 161
re-evaluation, specified 169
returning without evaluating 163
searching for 146
setting symbol values to 172, 176
writing to files 158, 160, 161

extended data, naming applications 168
external subroutines, defining symbols

as 215

F

file names
prompting user for 97
user input 97

files
acad.cfg 93, 173
appending 228
closing 41
copying 228

282 | Index

deleting 229
determining size of 232
end-of-line marker 166
listing in directories 223
loading 139

in AutoCAD documents 239
naming

temporary files 235
with extension only 234
without directory or

extension 233
opening 155
reading strings from 166
renaming 231
returning ASCII code from 165
searching library paths for 86
time of last modification 232
writing characters to 269
writing expressions to 158, 160, 161
writing strings to 269

find. See search 87
first list or atom from a string 164
Flip Screen function key 206
floating point values

converting angles from strings to 23
converting to real values 63

forcing an application to quit 163
forcing display of dialog boxes 117
freeing memory 90
function calls, keywords 118
function symbols

defining as external subroutines 215
undefining 215

functions
anonymous 126
AutoLISP I/O 155
Boolean, bitwise 35
built-in 52
defined in lists 53

setting symbols as 55
defining 52
displaying list structures 54
error-handling 82
executing 26
extended data-handling 270
invoking VLX 227

G

garbage collection 90
getlastrestored, layerstate 131
getlayers, layerstate 131
getnames, layerstate 132
graphics screen

displayed in AutoCAD 206
switching to text screen 206

graphics vectors
drawing 112

greater than operator 9
greater than or equal to operator 9
gripped objects 188, 194

H

handles
for new objects 72
returning object names by 114

has, layerstate 132

I

images
updating of screen 78

import, layerstate 133
importfromdb, layerstate 133
increment operator 11
incrementing numbers 11
index of list element, determining 242
indexed elements of selection sets 190
input devices, reading from

AutoCAD 108
input, restricting users 118
integers

converting from real numbers 87
converting from strings 31
converting to strings 41, 125, 171
greatest common denominator 91
largest in list 144
limits for user input 99
list using bitwise AND 141
list using bitwise OR 141
lists combining characters 238
pausing for user input of 99

Index | 283

quantity of string characters 198
range of values 99
shifting by specifying bits 142
smallest in list 147
verifying 154

intercepting errors 217
intersections, of lines 124

K

keyboard input buffer
reading strings from 166
returning ASCII code from 165

keywords
for user-input function calls 118
methods for abbreviating 122
user input 100

L

largest numbers 144
LAYERPMODE setting 18, 19
layers

tracking changes to 18, 19
layerstate-addlayers 128
layerstate-compare 129
layerstate-delete 130
layerstate-export 130
layerstate-getlastrestored 131
layerstate-getlayers 131
layerstate-getnames 132
layerstate-has 132
layerstate-import 133
layerstate-importfromdb 133
layerstate-removelayers 134
layerstate-rename 134
layerstate-restore 135
layerstate-save 135
layouts, paper space 127
less than operator 7
less than or equal to operator 8
library paths, searching for files 86
lines

angle of, in radians 22
determining intersections 124

linking arguments with Visual LISP
compiler 89

list structure of functions, displaying 54
lists

adding first element 49
appending to 25
comparison function 251, 253
concatenating 25
constructing 25, 137, 237
constructing dotted lists 49
deleting beginning characters 261
deleting end characters 258, 261
deleting leading characters 255
determining index of item 242
element index values 253
eliminating duplicate

elements 251, 253
evaluating primary conditions 48
first element

excluding 40
obtaining 39

first expression, converting 164
item position in 242
last element in 127
length, determining 238
linked to objects as extended

data 271
nth element of 153
number of elements in 136
passing to functions 26
quantity of elements 136
remainder, obtaining 146
removing elements from 248
replacing old items 199
reversing elements 170
searching for remainder 146
second element, obtaining Y

coordinate 39
substituting new items 199
supplied arguments and 143
testing elements in 225, 240, 241,

249, 250
third element, obtaining Z

coordinate 38
using OR 156
valid list definitions 222

284 | Index

verifying 138
loading files

for AutoLISP commands 34
for ObjectARX commands 34
into AutoCAD 239
recursion 139

logical AND 21
logical bitwise AND 141
logical bitwise OR 141
logical bitwise shift of integer 142
logical OR of expression 156
logs, natural logs of numbers 140
lowercase characters, converting 197

M

mathematical functions
addition 1
AND 21
bitwise NOT 10
division 4, 168
equality checking 5, 80, 81
exponentiation 86
greater than 9
less than or equal to 8
multiplication 3
not equal to 6
subtraction 2

MCS. See Model Coordinate System 150
measurements, converting values 51
measuring text objects 205
memory

allocating 85
dynamic 145
freeing unused 90
setting segment size 21
status in AutoLISP 145

menus
DIESEL expressions 147

MIRROR3D command 277
Model Coordinate System (MCS) 150
Model to World Transformation

Matrix 150
multiple vectors, on graphics screen 112
multiply operator 3

N

named object dictionary, entity name
of 149

names
of entities in selections sets 190
of objects, returning 69, 72, 75, 76

namespaces
blackboard namespace variables 216
See also separate-namespace VLX 75
variable values 223, 224
variables in open documents 244

naming
commands in AutoCAD 94
files

temporary files 235
with AutoCAD file dialog

box 97
objects 72
valid characters for symbols 180

negative numbers, verifying 148
nested entities 79
newlines, printing to command line 205
nil

checking variable for 152, 153
testing list elements for 241
testing predicate for 250

nondeleted last object, returning name
of 69

nongraphical objects, adding to
dictionaries 56

not equal to operator 6
nth element of a list 153
numbers

absolute values of 12
checking equality of 5
common denominators 91
converting to real numbers 88
converting to strings 171
decrementing 12
evaluating to zero 272
incrementing 11
largest 144
negative, verifying 148
See also real numbers 75
smallest 147

Index | 285

O

Object Coordinate System (OCS) 208
Object Snap mode 77

specifying points 157
ObjectARX applications 26

listing loaded applications 26
loading 27
loading associated files 34
undefining symbols 215
unloading 28

objects
adding to selection sets 183
assigning handles 72
complex 149
creating 72
creating in drawings 70
creating selection sets from 185
deleting 67
deleting from selection sets 184
extended data 168
extended object data, functions 270
gripping 194
handles and 114
identifying symbols 263
last nondeleted 69
linked as extended data 271
modifying definition data 73
naming 69, 72, 76
nested 79
nongraphical

accessing 149
adding to dictionaries 56

number in selection set 189
redrawing in current viewport 167
restoring deleted objects 67
retrieving definition data 68
returning next drawing object 75
searching symbol tables for 203
selected and gripped 188, 194
selecting 77, 149, 151
selecting for set 194
testing for selection set

membership 189
undeleting 67
updating screen image 79

opening files 155
operators

- (subtract) 2
* (multiply) 3
/ (divide) 4
/= (not equal to) 6
\ 7
\ 8
+ (add) 1
= (equal to) 5
> (greater than) 9
>= (greater than or equal to) 9
~ (bitwise NOT) 10
1- (decrement) 12
1+ (increment) 11

optimizing arguments with Visual LISP
compiler 89

output. See writing 269

P

paper space, current layouts in 127
patterns

matching with wild cards 265
replacing in strings 259
searching in strings 259

points
3D 157
pausing for user input of 102
specifying 102
transforming coordinate

systems 150
translating between coordinate

systems 208
Y coordinate 39
Z coordinate 38

polylines
definition data 149
selecting 149
updating screen image 79

Q

quit/exit abort error message 84
quitting applications, forcing 163

286 | Index

R

radians
arctangents measured in 30
converting strings to 23
converting to strings 24
of angles 91

reading, AutoCAD input devices 108
real numbers

and natural logs 140
converting from floating point 63
converting from numbers 88
converting from strings 31
converting to smaller integers 87
converting to strings 171
largest in list 144
pausing for user input of 104
smallest in list 147
specifying 104
square roots 182
verifying 154

real values
converting angles from radians

to 23
converting floating point values

to 63
rectangles

corners, pausing for user input 94
recursion, in loading files 139
REGEN command 79
registering

applications 168
registry

creating keys 247
registry keys, creating 247
remainders, in division 168
removelayers, layerstate 134
removing. See deleting 67
rename, layerstate 134
renaming

dictionary entries 60
files 231

restore, layerstate 135

S

save, layerstate 135
screen images, updating 78
screen menus, entering text in 110
screens

displaying messages 162
dual-screen display 162
Flip Screen function key 206
graphics for AutoCAD 106
switching graphics screen to text

screen 206
updating object image 79
writing characters to 269
writing strings to 269

searching
AutoCAD library path 86
dictionaries 61
files, end-of-line markers 166
lists

for old items 199
for remainder 146

segments, setting size of 21
selecting objects 77, 149
selection sets

adding new objects 183
creating 183, 185
creation information 191
deleting objects from 184
indexed elements of 190
members, determining 189
number of objects in 189
object selection methods (list) 185
point descriptor IDs (table) 193
returning entity names 190
selected and gripped 188, 194
selection method IDs (table) 192
testing for membership of 189

sine of angle 179
smallest numbers 147
SNAPANG system variable 178
SOLPROF command 278
sorting

lists 253
strings 14

square roots, as real numbers 182

Index | 287

status line,writing text to 110
strings

alphabetizing list of 14
concatenating multiple strings 198
containing AutoLISP version

number 214
converting

angular value in radians to 24
from angle to radians 23
integers to 125
numbers to 171
to real numbers 31

displaying in prompt area 162
longest common prefix 256
number of characters in 198
pausing for user input of 105
reading from files 166
replacing patterns 259
searching

for ASCII code 257
for patterns 259

specifying 105
substituting characters 261
substrings 200

subkeys, in Windows registry 246
subroutines, external 215
substituting list items 199
substrings. See strings 200
subtract operator 2
symbol tables

checking names of valid
characters 180

finding next item 201
searching

for object names 203
for symbol names 204

symbols
defining current atoms list 33
determining if nil 152, 153
external subroutines 215
function symbols

defining 215
undefining 215

identifying for objects 263
invalid characters (table) 181
name in uppercase 262

naming with valid characters 180
searching for names in symbol

tables 204
setting as functions 55
setting values to expressions 172,

176
undefining for ObjectARX 215
value bound to 37, 263

system variables
environment variable names 96
retrieving values of 106
See also environment variables 106
setting values 177

T

temporary files, naming 235
test functions, for lists 225, 241, 242,

249, 250
text

in screen menus 110
on AutoCAD status line 110

text boxes, diagonal coordinates 205
text objects, measuring 205
text screen, switching from graphics

screen 206
trace flag, clearing 213
trace function, debugging 207
transformation matrix

vectors 112
translating points or displacements 208
trapping errors 217
truncating numbers 87
type function, data types (list) 211

U

UCS. See user coordinate system 157
undefining function symbols 215
undeleting objects 67
units of measurement, converting values

and 51
untrace function, debugging 213
uppercase characters, converting 197
user coordinate system, 3D points 157

288 | Index

user input
angles 101
integers 99
keyboard input buffer 165
keywords 100

for function calls 118
points 102
real numbers 104
restricting type of 118
selecting objects without user

input 151
strings 105

user-definable error-handling
function 82

V

values
bound to symbols 37
converting to other units of

measurement 51
variables

copying values into document
namespaces 244

determining if numeric 154
in blackboard namespace 216
retrieving values from

namespace 223
setting values 176

in namespace 224
valid list definitions 222

vectors
drawing in viewports 107
drawing on graphics screen 112

verification
of lists 138
of negative numbers 148
of nil evaluation 152, 153
of real numbers or integers 154

version of current AutoLISP 214
VIEWPORT entity type

changing 75
creating 71

viewports
clearing current 107
current configurations 264

drawing vectors 112
listing descriptors 264
redrawing

current viewport 167
objects 167

specifying views 179
vectors, drawing 107

views, establishing 179
Visual LISP

linking and optimizing
arguments 89

VLX applications
error handlers 227
invoking from another

namespace 227

W

warning message, in dialog boxes 20
WCS. See World Coordinate System 150
wild-card pattern match 265
Windows applications, starting 196
Windows registry

deleting keys or values from 245
stored data for keys 247
subkeys 246

World Coordinate System
transforming entity definition data

points to 149
writing

characters 269
expressions to files 158, 160, 161
strings 269

X

xdata. See extended data 242

Y

Y coordinate, obtaining 39

Z

Z coordinate, obtaining 38

Index | 289

zero, testing number for 272

290 | Index

	Contents
	AutoLISP Functions
	AutoLISP Functions
	Operators
	+ (add)
	- (subtract)
	* (multiply)
	/ (divide)
	= (equal to)
	/= (not equal to)
	< (less than)
	<= (less than or equal to)
	> (greater than)
	>= (greater than or equal to)
	~ (bitwise NOT)
	1+ (increment)
	1- (decrement)

	A Functions
	abs
	acad-pop-dbmod
	acad-push-dbmod
	acad_strlsort
	acad_truecolorcli
	acad_truecolordlg
	acdimenableupdate
	acet-layerp-mode
	acet-layerp-mark
	alert
	alloc
	and
	angle
	angtof
	angtos
	append
	apply
	arx
	arxload
	arxunload
	ascii
	assoc
	atan
	atof
	atoi
	atom
	atoms-family
	autoarxload
	autoload

	B Functions
	Boole
	boundp

	C Functions
	caddr
	cadr
	car
	cdr
	chr
	close
	command
	command-s
	cond
	cons
	cos
	cvunit

	D Functions
	defun
	defun-q
	defun-q-list-ref
	defun-q-list-set
	dictadd
	dictnext
	dictremove
	dictrename
	dictsearch
	distance
	distof
	dumpallproperties

	E Functions
	entdel
	entget
	entlast
	entmake
	entmakex
	entmod
	entnext
	entsel
	entupd
	eq
	equal
	error
	eval
	exit
	exp
	expand
	expt

	F Functions
	findfile
	fix
	float
	foreach
	function

	G Functions
	gc
	gcd
	getangle
	getcfg
	getcname
	getcorner
	getdist
	getenv
	getfiled
	getint
	getkword
	getorient
	getpoint
	getpropertyvalue
	getreal
	getstring
	getvar
	graphscr
	grclear
	grdraw
	grread
	grtext
	grvecs

	H Functions
	handent

	I Functions
	if
	initcommandversion
	initdia
	initget
	ispropertyreadonly
	inters
	itoa

	L Functions
	lambda
	last
	layoutlist
	layerstate-addlayers
	layerstate-compare
	layerstate-delete
	layerstate-export
	layerstate-getlastrestored
	layerstate-getlayers
	layerstate-getnames
	layerstate-has
	layerstate-import
	layerstate-importfromdb
	layerstate-removelayers
	layerstate-rename
	layerstate-restore
	layerstate-save
	length
	list
	listp
	load
	log
	logand
	logior
	lsh

	M Functions
	mapcar
	max
	mem
	member
	menucmd
	min
	minusp

	N Functions
	namedobjdict
	nentsel
	nentselp
	not
	nth
	null
	numberp

	O Functions
	open
	or
	osnap

	P Functions
	polar
	prin1
	princ
	print
	progn
	prompt

	Q Functions
	quit
	quote

	R Functions
	read
	read-char
	read-line
	redraw
	regapp
	rem
	repeat
	reverse
	rtos

	S Functions
	set
	setcfg
	setenv
	setpropertyvalue
	setq
	setvar
	setview
	sin
	snvalid
	sqrt
	ssadd
	ssdel
	ssget
	ssgetfirst
	sslength
	ssmemb
	ssname
	ssnamex
	sssetfirst
	startapp
	strcase
	strcat
	strlen
	subst
	substr

	T Functions
	tblnext
	tblobjname
	tblsearch
	terpri
	textbox
	textpage
	textscr
	trace
	trans
	type

	U Functions
	untrace

	V Functions
	ver
	vl-acad-defun
	vl-acad-undefun
	vl-bb-ref
	vl-bb-set
	vl-catch-all-apply
	vl-catch-all-error-message
	vl-catch-all-error-p
	vl-cmdf
	vl-consp
	vl-directory-files
	vl-doc-ref
	vl-doc-set
	vl-every
	vl-exit-with-error
	vl-exit-with-value
	vl-file-copy
	vl-file-delete
	vl-file-directory-p
	vl-file-rename
	vl-file-size
	vl-file-systime
	vl-filename-base
	vl-filename-directory
	vl-filename-extension
	vl-filename-mktemp
	vl-list*
	vl-list->string
	vl-list-length
	vl-load-all
	vl-mkdir
	vl-member-if
	vl-member-if-not
	vl-position
	vl-prin1-to-string
	vl-princ-to-string
	vl-propagate
	vl-registry-delete
	vl-registry-descendents
	vl-registry-read
	vl-registry-write
	vl-remove
	vl-remove-if
	vl-remove-if-not
	vl-some
	vl-sort
	vl-sort-i
	vl-string->list
	vl-string-elt
	vl-string-left-trim
	vl-string-mismatch
	vl-string-position
	vl-string-right-trim
	vl-string-search
	vl-string-subst
	vl-string-translate
	vl-string-trim
	vl-symbol-name
	vl-symbol-value
	vl-symbolp
	vports

	W Functions
	wcmatch
	while
	write-char
	write-line

	X Functions
	xdroom
	xdsize

	Z Functions
	zerop

	Externally Defined Commands
	Externally Defined Commands
	align
	cal
	mirror3d
	rotate3d
	solprof

	Index

