Kenan kılıçaslan

  • Perdita di attrito
  • Equazione differenziale
  • Risolvi l'equazione
    Hesap Modülleri Matematica

Con $\small \sqrt{ax^2+bx+c}$

1.
$\int\displaystyle \frac{dx}{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}=\left\{\begin{array}{l} \displaystyle \frac{1}{\displaystyle \sqrt{a}}\ln\left(2\displaystyle \sqrt{a}\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}+2ax+b\right)\\ -\displaystyle \frac{1}{\displaystyle \sqrt{-a}}\sin^{\displaystyle-1}\left(\displaystyle \frac{2ax+b}{\displaystyle \sqrt{b^{\displaystyle2}-4ac}}\right)\\ or\\ \displaystyle \frac{1}{\displaystyle \sqrt{a}}\sinh^{\displaystyle-1}\left(\displaystyle \frac{2ax+b}{\displaystyle \sqrt{4ac-b^{\displaystyle2}}}\right) \end{array} \right.$
2.
$\displaystyle \int\displaystyle \frac{x\,dx}{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}=\displaystyle \frac{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}{a}\;-\;\displaystyle \frac{b}{2a}\displaystyle \int\displaystyle \frac{dx}{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}$
3.
$\begin{array}{lcl} \displaystyle \int\displaystyle \frac{x^{\displaystyle2}\,dx}{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}&=&\displaystyle \frac{2ax-3b}{4a^{\displaystyle2}}\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}\;\\ \\&&+\;\displaystyle \frac{3b^{\displaystyle2}-4ac}{8a^{\displaystyle2}}\displaystyle \int\displaystyle \frac{dx}{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}} \end{array}$
4.
$\displaystyle \int\displaystyle \frac{dx}{x\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}=\left\{\begin{array}{l} -\displaystyle \frac{1}{\displaystyle \sqrt{c}}\ln\left(\displaystyle \frac{2\displaystyle \sqrt{c}\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}+bx+2c}{x}\right)\\ \\ \displaystyle \frac{1}{\displaystyle \sqrt{-c}}\sin^{\displaystyle-1}\left(\displaystyle \frac{bx+2c}{\left|x\right|\displaystyle \sqrt{b^{\displaystyle2}-4ac}}\right)\\ \mbox{or}\\ -\displaystyle \frac{1}{\displaystyle \sqrt{c}}\sinh^{\displaystyle-1}\left(\displaystyle \frac{bx+2c}{\left|x\right|\displaystyle \sqrt{4ac-b^{\displaystyle2}}}\right) \end{array} \right.$
5.
$\displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle2}\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}=-\displaystyle \frac{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}{cx}\;-\;\displaystyle \frac{b}{2c}\displaystyle \int\displaystyle \frac{dx}{x\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}$
6.
$\begin{array}{lcl} \displaystyle \int\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}\,dx&=&\displaystyle \frac{(2ax+b)\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}{4a}\;\\&&+\;\displaystyle \frac{4ac-b^{\displaystyle2}}{8a}\displaystyle \int\displaystyle \frac{dx}{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}} \end{array}$
7.
$\small \displaystyle \begin{array}{lclcl} \displaystyle \int x\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}\,dx & = & \displaystyle \frac{(ax^{\displaystyle2}+bx+c)^{\displaystyle3/2}}{3a}\;-\;\displaystyle \frac{b(2ax+b)}{8a^{\displaystyle2}}\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}\\&& - \displaystyle \frac{b(4ac-b^{\displaystyle2})}{16a^{\displaystyle2}}\displaystyle \int\displaystyle \frac{dx}{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}} \end{array}$
8.
$\begin{array}{lcl} \displaystyle \int x^{\displaystyle2}\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}\,dx & =&\displaystyle \frac{6ax-5b}{24a^{\displaystyle2}}\left(ax^{\displaystyle2}+bx+c\right)^{\displaystyle3/2}\;\\ && \\&&+\;\displaystyle \frac{5b^{\displaystyle2}-4ac}{16a^{\displaystyle2}}\displaystyle \int\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}\,dx \end{array}$
9.
$\begin{array}{lcl} \displaystyle \int\displaystyle \frac{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}{x}\,dx&=&\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}\;+\;\displaystyle \frac{b}{2}\displaystyle \int\displaystyle \frac{dx}{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}\;\\&&+\;c\displaystyle \int\displaystyle \frac{dx}{x\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}} \end{array}$
10.
$\begin{array}{lcl} \displaystyle \int\displaystyle \frac{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}{x^{\displaystyle2}}\,dx &=& -\displaystyle \frac{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}{x}\;+\;a\displaystyle \int\displaystyle \frac{dx}{\displaystyle{ax^{\displaystyle2}+bx+c}}\;\\ \\&&+\;\displaystyle \frac{b}{2}\displaystyle \int\displaystyle \frac{dx}{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}} \end{array}$
11.
$\displaystyle \int\displaystyle \frac{dx}{(ax^{\displaystyle2}+bx+c)^{\displaystyle3/2}}=\displaystyle \frac{2(2ax+b)}{(4ac-b^{\displaystyle2})\,\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}$
12.
$\displaystyle \int\displaystyle \frac{x\,dx}{(ax^{\displaystyle2}+bx+c)^{\displaystyle3/2}}=\displaystyle \frac{2(bx+2c)}{(b^{\displaystyle2}-4ac)\,\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}$
13.
$\small \displaystyle \int\displaystyle \frac{x^{\displaystyle2}\,dx}{(ax^{\displaystyle2}+bx+c)^{\displaystyle3/2}}=\displaystyle \frac{(2b^{\displaystyle2}-4ac)x+2bc}{a(4ac-b^{\displaystyle2})\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}+\displaystyle \frac{1}{a}\displaystyle \int\displaystyle \frac{dx}{\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}$
14.
$\small \begin{array}{lcl} \displaystyle \int\displaystyle \frac{dx}{x(ax^{\displaystyle2}+bx+c)^{\displaystyle3/2}}&=&\displaystyle \frac{1}{c\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}\,+\,\displaystyle \frac{1}{c}\displaystyle \int\displaystyle \frac{dx}{x\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}\\&&\\&&-\;\displaystyle \frac{b}{2c}\displaystyle \int\displaystyle \frac{dx}{(ax^{\displaystyle2}+bx+c)^{\displaystyle3/2}}\end{array}$
15.
$\displaystyle \begin{array}{lcccl} \displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle2}(ax^{\displaystyle2}+bx+c)^{\displaystyle3/2}} =&& -\displaystyle \frac{ax^{\displaystyle2}+2bx+c}{c^{\displaystyle2}x\displaystyle \sqrt{ax^{\displaystyle2}+bx+c}}\,\\ \\&&+\,\displaystyle \frac{b^{\displaystyle2}-2ac}{2c^{\displaystyle2}}\displaystyle \int\displaystyle \frac{dx}{(ax^{\displaystyle2}+bx+c)^{\displaystyle3/2}}\\\ && \end{array}$
16.
$\displaystyle \begin{array}{lcl} \displaystyle \int(ax^{\displaystyle2}+bx+c)^{\displaystyle n+1/2}\,dx = \displaystyle \frac{(2ax+b)(ax^{\displaystyle2}+bx+c)^{\displaystyle n+1/2}}{4a(n+1)}\\\quad\quad\quad\quad\quad\quad \end{array}$
17.
$\begin{array}{llll} \displaystyle \int x(ax^{\displaystyle2}+bx+c)^{\displaystyle n+1/2}\,dx=\displaystyle \frac{(ax^{\displaystyle2}+bx+c)^{\displaystyle n+3/2}}{a(2n+3)}\,\\ -\,\displaystyle \frac{b}{2a}\displaystyle \int(ax^{\displaystyle2}+bx+c)^{\displaystyle n+1/2}\,dx \end{array}$
18.
$\small \displaystyle \begin{array}{lcl} \displaystyle \int\displaystyle \frac{dx}{(ax^{\displaystyle2}+bx+c)^{\displaystyle n+1/2}} & = & \displaystyle \frac{2(2ax+b)}{(2n-1)(4ac-b^{\displaystyle2})(ax^{\displaystyle2}+bx+c)^{\displaystyle n-1/2}}\\ \end{array}$
19.
$\displaystyle \begin{array}{ll} \displaystyle \int\displaystyle \frac{dx}{x(ax^{\displaystyle2}+bx+c)^{\displaystyle n+1/2}} = &\displaystyle \frac{1}{(2n-1)c(ax^{\displaystyle2}+bx+c)^{\displaystyle n-1/2}}\\&\\ \end{array}$
beyaz_sayfa_en_alt_oval

Articoli    Documenti    Calcoli    Converti unità    Contatto

Kenan KILIÇASLAN 2012© Copyright.       Designed by Nuit