Kenan kılıçaslan

  • Perdita di attrito
  • Equazione differenziale
  • Risolvi l'equazione
    Hesap Modülleri Matematica

Integrali con $\small \ln \left ( {ax} \right )$

1.
$\displaystyle\int \ln xdx=x\ln x-x$
2.
$\displaystyle\int x\ln x dx=\displaystyle \frac{x^2}{2}(\ln x-\displaystyle \frac{1}{2})$
3.
$\displaystyle\int x^m\ln xdx=\displaystyle \frac{x^{m+1}}{m+1}\left(\ln x-\displaystyle \frac{1}{m+1}\right)$
4.
$\displaystyle\int\displaystyle \frac{\ln x}{x}dx=\displaystyle \frac{1}{2}\ln^2 x$
5.
$\displaystyle\int\displaystyle \frac{\ln x}{x^2}dx=-\displaystyle \frac{\ln x}{x}-\displaystyle \frac{1}{x}$
6.
$\displaystyle\int\ln^2 xdx=x\ln^2 x-2x\ln x+2x$
7.
$\displaystyle\int\displaystyle \frac{\ln^n xdx}{x}=\displaystyle \frac{\ln^{n+1}x}{n+1}$
8.
$\displaystyle\int\displaystyle \frac{dx}{x\ln x}=\ln (\ln x)$
9.
$\displaystyle\int\displaystyle \frac{dx}{\ln x}=\ln (\ln x)+\ln x+\displaystyle \frac{\ln^2 x}{2\cdot 2!}+\displaystyle \frac{\ln^3 x}{3\cdot 3!}+\cdot\cdot\cdot$
10.
$\displaystyle\int\displaystyle \frac{x^m dx}{\ln x}=\ln (\ln x)+(m+1)\ln x + \displaystyle \frac{(m+1)^2\ln^2 x}{2\cdot 2!}+\displaystyle \frac{(m+1)^3\ln^3x}{3\cdot 3!}+\cdot\cdot\cdot$
11.
$\displaystyle\int\ln^n xdx=x\ln^n x-n\int\ln^{n-1}xdx$
12.
$\displaystyle\int x^m\ln^n xdx=\displaystyle \frac{x^{m+1}\ln^n x}{m+1}-\displaystyle \frac{n}{m+1}\int x^m\ln^{n-1}xdx$
13.
$\displaystyle\int\ln(x^2+a^2)dx=x\ln(x^2+a^2)-2x+2a\tan^{-1}\displaystyle \frac{x}{a}$
14.
$\displaystyle\int\ln(x^2-a^2)dx=x\ln(x^2-a^2)-2x+a\ln\left(\displaystyle \frac{x+a}{x-a}\right)$
15.
$\displaystyle\int x^m\ln(x^2\pm a^2)dx=\displaystyle \frac{x^{m+1}\ln(x^2\pm a^2)}{m+1}-\displaystyle \frac{2}{m+1}\int\displaystyle \frac{x^{m+2}}{x^2\pm a^2}dx$
beyaz_sayfa_en_alt_oval

Articoli    Documenti    Calcoli    Converti unità    Contatto

Kenan KILIÇASLAN 2012© Copyright.       Designed by Nuit