Matematica
|
Integrali con $\small \sin(ax) $
- 1.
- $\displaystyle \int x\sin ax\,dx=\displaystyle \frac{\sin ax}{a^{\displaystyle2}}\,-\,\displaystyle \frac{x\cos ax}{a}$
- 2.
- $\displaystyle \int x^{\displaystyle2}\sin ax\,dx=\,\left(\displaystyle \frac{2}{a^{\displaystyle3}}\,-\,\displaystyle \frac{x^{\displaystyle2}}{a}\right)\cos ax+\displaystyle \frac{2x}{a^{\displaystyle2}}\sin ax\,$
- 3.
- $\displaystyle \int\displaystyle \frac{\sin ax}{x}\,dx=ax\,-\,\displaystyle \frac{(ax)^{\displaystyle3}}{3\cdot 3!}\,+\,\displaystyle \frac{(ax)^{\displaystyle5}}{5\cdot 5!}\,-\,\cdots$
- 4.
- $\displaystyle \int\displaystyle \frac{\sin ax}{x^{\displaystyle2}}\,dx=-\displaystyle \frac{\sin ax}{x}\,+\,a\displaystyle \int\displaystyle \frac{\cos ax}{x}\,dx$
- 5.
- $\displaystyle \int\displaystyle \frac{dx}{\sin ax}=\displaystyle \frac{1}{a}\ln(\csc ax\,-\,\cot ax)=\displaystyle \frac{1}{a}\ln\tan\displaystyle \frac{ax}{2}$
- 6.
- $\small \displaystyle \int\displaystyle \frac{x\,dx}{\sin ax}=\displaystyle \frac{1}{a^{\displaystyle2}}\left\{ax\,+\,\displaystyle \frac{(ax)^{\displaystyle3}}{18}\,+\,\displaystyle \frac{7(ax)^{\displaystyle5}}{1800}\,+\,\cdots\,+\,\displaystyle \frac{2(2^{\displaystyle2n-1}-1)B_{n}(ax)^{\displaystyle2n+1}}{(2n+1)!}\,+\,\cdots\right\}$
- 7.
- $\displaystyle \int\sin^{\displaystyle2}ax\,dx=\displaystyle \frac{x}{2}\,-\,\displaystyle \frac{\sin 2ax}{4a}$
- 8.
- $\displaystyle \int x\sin^{\displaystyle2} ax\,dx=\displaystyle \frac{x^{\displaystyle2}}{4}\,-\,\displaystyle \frac{x\sin 2ax}{4a}\,-\,\displaystyle \frac{\cos 2ax}{8a^{\displaystyle2}}$
- 9.
- $\displaystyle \int\sin^{\displaystyle3} ax\,dx=-\displaystyle \frac{\cos ax}{a}\,+\,\displaystyle \frac{cos^{\displaystyle3}ax}{3a}$
- 10.
- $\displaystyle \int\sin^{\displaystyle4} ax\,dx=\displaystyle \frac{3x}{8}\,-\,\displaystyle \frac{\sin 2ax}{4a}\,+\,\displaystyle \frac{\sin 4ax}{32a}$
- 11.
- $\displaystyle \int\displaystyle \frac{dx}{\sin ^{\displaystyle2}ax}=-\displaystyle \frac{1}{a}\cot ax$
- 12.
- $\displaystyle \int\displaystyle \frac{dx}{\sin^{\displaystyle3} ax}=-\displaystyle \frac{\cos ax}{2a\sin^{\displaystyle2}ax}\,+\,\displaystyle \frac{1}{2a}\ln\tan\displaystyle \frac{ax}{2}$
- 13.
- $\displaystyle \int\sin px\sin qx\,dx=\displaystyle \frac{\sin(p-q)x}{2(p-q)}\,-\,\displaystyle \frac{\sin(p+q)x}{2(p+q)}$
- 14.
- $\displaystyle \int\displaystyle \frac{dx}{1-\sin ax}=\displaystyle \frac{1}{a}\tan\left(\displaystyle \frac{\pi}{4}\,+\,\displaystyle \frac{ax}{2}\right)$
- 15.
- $\displaystyle \int\displaystyle \frac{x\,dx}{1-\sin ax}=\displaystyle \frac{x}{a}\tan\left(\displaystyle \frac{\pi}{4}\,+\,\displaystyle \frac{ax}{2}\right)\,+\,\displaystyle \frac{2}{a^{\displaystyle2}}\ln\sin\left(\displaystyle \frac{\pi}{4}\,-\,\displaystyle \frac{ax}{2}\right)$
- 16.
- $\displaystyle \int\displaystyle \frac{dx}{1+\sin ax}=-\displaystyle \frac{1}{a}\tan\left(\displaystyle \frac{\pi}{4}\,-\,\displaystyle \frac{ax}{2}\right)$
- 17.
- $\displaystyle \int\displaystyle \frac{x\,dx}{1+\sin ax}=-\displaystyle \frac{x}{a}\tan\left(\displaystyle \frac{\pi}{4}\,-\,\displaystyle \frac{ax}{2}\right)\,+\,\displaystyle \frac{2}{a^{\displaystyle2}}\ln\sin\left(\displaystyle \frac{\pi}{4}\,+\,\displaystyle \frac{ax}{2}\right)$
- 18.
- $\displaystyle \int\displaystyle \frac{dx}{(1-\sin ax)^{\displaystyle2}}=\displaystyle \frac{1}{2a}\tan\left(\displaystyle \frac{\pi}{4}\,+\,\displaystyle \frac{ax}{2}\right)\,+\,\displaystyle \frac{1}{6a}\tan^{\displaystyle3}\left(\displaystyle \frac{\pi}{4}\,+\,\displaystyle \frac{ax}{2}\right)$
- 19.
- $\displaystyle \int\displaystyle \frac{dx}{(1+\sin ax)^{\displaystyle2}}=-\displaystyle \frac{1}{2a}\tan\left(\displaystyle \frac{\pi}{4}\,-\,\displaystyle \frac{ax}{2}\right)\,-\,\displaystyle \frac{1}{6a}\tan^{\displaystyle3}\left(\displaystyle \frac{\pi}{4}\,-\,\displaystyle \frac{ax}{2}\right)$
- 20.
- $\displaystyle \int\displaystyle \frac{dx}{p+q\sin ax}=\left\{\begin{array}{l}
\displaystyle \frac{2}{a\displaystyle \sqrt{p^{\displaystyle2}-q^{\displaystyle2}}}\tan^{\displaystyle-1}\displaystyle \frac{p\tan\displaystyle \frac{1}{2}ax+q}{\displaystyle \sqrt{p^{\displaystyle2}-q^{\displaystyle2}}}\\ \\ \displaystyle \frac{1}{a\displaystyle \sqrt{q^{\displaystyle2}-p^{\displaystyle2}}}\ln\left(\displaystyle \frac{p\tan\displaystyle \frac{1}{2}ax+q-\displaystyle \sqrt{q^{\displaystyle2}-p^{\displaystyle2}}}{p\tan\displaystyle \frac{1}{2}ax+q+\displaystyle \sqrt{q^{\displaystyle2}-p^{\displaystyle2}}}\right) \end{array} \right.$
- 21.
- $\displaystyle \int\displaystyle \frac{dx}{(p+q\sin ax)^{\displaystyle2}}=\displaystyle \frac{q\cos ax}{a(p^{\displaystyle2}-q^{\displaystyle2})(p+q\sin ax)}\,+\,\displaystyle \frac{p}{p^{\displaystyle2}-q^{\displaystyle2}}\displaystyle \int\displaystyle \frac{dx}{p+q\sin ax}$
- 22.
- $\displaystyle \int\displaystyle \frac{dx}{p^{\displaystyle2}+q^{\displaystyle2}\sin^{\displaystyle2} ax}=\displaystyle \frac{1}{ap\displaystyle \sqrt{p^{\displaystyle2}+q^{\displaystyle2}}}\tan^{\displaystyle-1}\displaystyle \frac{\displaystyle \sqrt{p^{\displaystyle2}+q^{\displaystyle2}}\tan ax}{p}$
- 23.
- $\displaystyle \int\displaystyle \frac{dx}{p^{\displaystyle2}- q^{\displaystyle2}\sin^{\displaystyle2}ax}=\left\{\begin{array}{l}
\displaystyle \frac{1}{ap\displaystyle \sqrt{p^{\displaystyle2}-q^{\displaystyle2}}}\tan^{\displaystyle-1}\displaystyle \frac{\displaystyle \sqrt{p^{\displaystyle2}-q^{\displaystyle2}}\tan ax}{p}\\ \\ \displaystyle \frac{1}{2ap\displaystyle \sqrt{q^{\displaystyle2}-p^{\displaystyle2}}}\ln\left(\displaystyle \frac{\displaystyle \sqrt{q^{\displaystyle2}-p^{\displaystyle2}}\tan ax+p}{\displaystyle \sqrt{q^{\displaystyle2}-p^{\displaystyle2}}\tan ax-p}\right) \end{array} \right.$
- 24.
- $\small \displaystyle \int x^{\displaystyle m}\sin ax\,dx=-\displaystyle \frac{x^{\displaystyle m}\cos ax}{a}\,+\,\displaystyle \frac{mx^{\displaystyle m-1}\sin ax}{a^{\displaystyle2}}\,-\,\displaystyle \frac{m(m-1)}{a^{\displaystyle2}}\displaystyle \int\ x^{\displaystyle m-2}\sin ax\,dx$
- 25.
- $\displaystyle \int\displaystyle \frac{\sin ax}{x^{\displaystyle n}}\,dx=-\displaystyle \frac{\sin ax}{(n-1)x^{\displaystyle n-1}}\,+\,\displaystyle \frac{a}{n-1}\displaystyle \int\displaystyle \frac{\cos ax}{x^{\displaystyle n-1}}\,dx$
- 26.
- $\displaystyle \int\sin^{\displaystyle n}ax\,dx=-\displaystyle \frac{\sin^{\displaystyle n-1}ax\cos ax}{an}\,+\,\displaystyle \frac{n-1}{n}\displaystyle \int\sin^{\displaystyle n-2}ax\,dx$
- 27.
- $\displaystyle \int\displaystyle \frac{dx}{\sin^{\displaystyle n}ax}=\displaystyle \frac{-\cos ax}{a(n-1)\sin^{\displaystyle n-1}ax}\,+\,\displaystyle \frac{n-2}{n-1}\displaystyle \int\displaystyle \frac{dx}{\sin^{\displaystyle n-2}ax}$
- 28.
- $\small \displaystyle \int\displaystyle \frac{x\,dx}{\sin^{\displaystyle n}ax}=\displaystyle \frac{-x\cos ax}{a(n-1)\sin^{\displaystyle n-1}ax}\,-\,\displaystyle \frac{1}{a^{\displaystyle2}(n-1)(n-2)\sin^{\displaystyle n-2}ax}\,+\,\displaystyle \frac{n-2}{n-1}\displaystyle \int\displaystyle \frac{x\,dx}{\sin^{\displaystyle n-2}ax}$
|