Matematica
|
Con $\small \sqrt{a^2-x^2}$
- 1.
- $\displaystyle \int\displaystyle \frac{dx}{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}=\sin^{\displaystyle-1}\displaystyle \frac{x}{a}$
- 2.
- $\displaystyle \int\displaystyle \frac{x\,dx}{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}=-\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}$
- 3.
- $\displaystyle \int\displaystyle \frac{x^{\displaystyle2}\,dx}{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}=-\displaystyle \frac{x\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{2}\;+\;\displaystyle \frac{a^{\displaystyle2}}{2}\sin^{\displaystyle-1}\displaystyle \frac{x}{a}$
- 4.
- $\displaystyle \int\displaystyle \frac{x^{\displaystyle3}\,dx}{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}=\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{3}\;-\;a^{\displaystyle2}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}$
- 5.
- $\displaystyle \int\displaystyle \frac{dx}{x\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}=-\displaystyle \frac{1}{a}\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)$
- 6.
- $\displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle2}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}=-\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{a^{\displaystyle2}x}$
- 7.
- $\displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle3}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}=-\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{2a^{\displaystyle2}x^{\displaystyle2}}\;-\;\displaystyle \frac{1}{2a^{\displaystyle3}}\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)$
- 8.
- $\displaystyle \int\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}\,dx=\displaystyle \frac{x\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{2}\;+\;\displaystyle \frac{a^{\displaystyle2}}{2}\sin^{\displaystyle-1}\displaystyle \frac{x}{a}$
- 9.
- $\displaystyle \int x\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}\,dx=-\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{3}$
- 10.
- $\begin{array}{lcl}
\displaystyle \int x^{\displaystyle2}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}\,dx&=&-\displaystyle \frac{x(x^{\displaystyle2}-a^{\displaystyle2})^{\displaystyle3/2}}{4}\;+\;\displaystyle \frac{a^{\displaystyle2}x\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{8}\;\\\\&&+\;\displaystyle \frac{a^{\displaystyle4}}{8}\sin^{\displaystyle-1}\displaystyle \frac{x}{a}
\end{array}$
- 11.
- $\displaystyle \int x^{\displaystyle3}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}\,dx=\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle5/2}}{5}\;-\;\displaystyle \frac{a^{\displaystyle2}(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{3}$
- 12.
- $\displaystyle \int\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\,dx=\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}-a\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)$
- 13.
- $\displaystyle \int\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x^{\displaystyle2}}\,dx=-\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}-\sin^{\displaystyle-1}\displaystyle \frac{x}{a}$
- 14.
- $\displaystyle \int\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x^{\displaystyle3}}\,dx=-\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{2x^{\displaystyle2}}\;+\;\displaystyle \frac{1}{2a}\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)$
- 15.
- $\displaystyle \int\displaystyle \frac{dx}{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \frac{x}{a^{\displaystyle2}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}$
- 16.
- $\displaystyle \int\displaystyle \frac{x\,dx}{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \frac{1}{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}$
- 17.
- $\displaystyle \int\displaystyle \frac{x^{\displaystyle2}\,dx}{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \frac{x}{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}-\sin^{\displaystyle-1}\displaystyle \frac{x}{a}$
- 18.
- $\displaystyle \int\displaystyle \frac{x^{\displaystyle3}\,dx}{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}+\displaystyle \frac{a^{\displaystyle2}}{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}$
- 19.
- $\displaystyle \int\displaystyle \frac{dx}{x(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}=\displaystyle \frac{1}{a^{\displaystyle2}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}-\displaystyle \frac{1}{a^{\displaystyle3}}\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)$
- 20.
- $\displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle2}(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}= -\displaystyle \frac{\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{a^{\displaystyle4}x}\;+\;\displaystyle \frac{x}{a^{\displaystyle4}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}$
- 21.
- $\begin{array}{lcl}
\displaystyle \int\displaystyle \frac{dx}{x^{\displaystyle3}(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}&=&\displaystyle \frac{-1}{2a^{\displaystyle2}x^{\displaystyle2}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}\;+\;\displaystyle \frac{3}{2a^{\displaystyle4}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}\;\\\\&&-\;\displaystyle \frac{3}{2a^{\displaystyle5}}\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)
\end{array}$
- 22.
- $\begin{array}{lcl}
\displaystyle \int(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}\,dx&=&\displaystyle \frac{x(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{4}\;+\;\displaystyle \frac{3a^{\displaystyle2}x\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{8}\;\\\\&&+\;\displaystyle \frac{3}{8}a^{\displaystyle4}\sin^{\displaystyle-1}\displaystyle \frac{x}{a}
\end{array}$
- 23.
- $\displaystyle \int x(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}\,dx=-\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{5}$
- 24.
- $\begin{array}{ll}
\displaystyle \int x^{\displaystyle2}(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}\,dx= -\displaystyle \frac{x(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle5/2}}{6}\;+\;\displaystyle \frac{a^{\displaystyle2}x(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{24}\\+\displaystyle \frac{a^{\displaystyle4}x\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{16}\;+\;\displaystyle \frac{a^{\displaystyle6}}{16}\sin^{\displaystyle-1}\displaystyle \frac{x}{a}
\end{array}$
- 25.
- $\displaystyle \int x^{\displaystyle3}(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}\,dx=\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle7/2}}{7}\;-\;\displaystyle \frac{a^{\displaystyle2}(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle5/2}}{5}$
- 26.
- $\begin{array}{lcl}
\displaystyle \int\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{x}\,dx&=&\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{3}\;+\;a^{\displaystyle2}\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}\;\\\\&&-\;a^{\displaystyle3}\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)
\end{array}$
- 27.
- $\begin{array}{lcl}
\displaystyle \int\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{x^{\displaystyle2}}\,dx&=&-\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{x}\;-\;\displaystyle \frac{3x\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{2}\;\\\\&&-\;\displaystyle \frac{3}{2}a^{\displaystyle2}\sin^{\displaystyle-1}\displaystyle \frac{x}{a}
\end{array}$
- 28.
- $\begin{array}{lcl}
\displaystyle \int\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{x^{\displaystyle3}}\,dx&=& -\displaystyle \frac{(a^{\displaystyle2}-x^{\displaystyle2})^{\displaystyle3/2}}{2x^{\displaystyle2}}\;-\;\displaystyle \frac{3\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{2}\;\\\\&&+\;\displaystyle \frac{3}{2}a\ln\left(\displaystyle \frac{a+\displaystyle \sqrt{a^{\displaystyle2}-x^{\displaystyle2}}}{x}\right)
\end{array}$
|