Matematica
|
Con √ax+b
- 2.
- ∫xdx√ax+b=2(ax−2b)3a2√ax+b
- 3.
- ∫x2dx√ax+b=2(3a2x2−4abx+8b2)15a3√ax+b
- 4.
- ∫dxx(ax+b)={1√bln(√ax+b−√b√ax+b+√b)2√−btan−1√ax+b−b
- 5.
- ∫dxx2√ax+b=−√ax+bbx−a2b∫dxx√ax+b
- 7.
- ∫x√ax+bdx=2(3ax−2b)15a2√(ax+b)3
- 8.
- ∫x2√ax+bdx=2(15a2x2−12abx+8b2)105a3√(ax+b)3
- 9.
- ∫√ax+bxdx=2√ax+b+b∫dxx√ax+b
- 10.
- ∫√ax+bx2dx=−√ax+bx+a2∫dxx√ax+b
- 11.
- ∫xm√ax+bdx=2xm√ax+b(2m+1)a−2mb(2m+1)a∫xm−1√ax+bdx
- 12.
- ∫dxxm√ax+b=−√ax+b(m−1)bxm−1−(2m−3)a(2m−2)b∫dxxm−1√ax+b
- 13.
- ∫xm√ax+bdx=2xm(2m+3)(ax+b)3/2−2mb(2m+3)a∫xm−1√ax+bdx
- 14.
- ∫√ax+bxm=−√ax+b(m−1)xm−1+a2(m−1)∫dxxm−1√ax+b
- 15.
- ∫(ax+b)m/2=2(ax+b)(m+2)/2a(m+2)
- 16.
- ∫x(ax+b)m/2=2(ax+b)(m+4)/2a2(m+4)−2b(ax+b)(m+2)/2a2(m+2)
- 17.
- ∫x2(ax+b)m/2=2(ax+b)(m+6)/2a3(m+6)−4b(ax+b)(m+4)/2a3(m+4)+2b2(ax+b)(m+2)/2a3(m+2)
- 18.
- ∫(ax+b)m/2xdx=2(ax+b)m/2m+b∫(ax+b)(m−2)/2xdx
|