Kenan k?l??aslan

  • Baca Hesabı
  • Sürtünme Kaybı
  • Diferansiyel Denklem
  • Denklem Çözümü
    Hesap Mod?lleri Denklemler

Üçüncü Dereceden Denklem Çözümü

\(\small{a*x^3+b*x^2+c*x+d=0}\) şeklinde bulunan, reel sayı veya kompleks sayı katsayılı, üçüncü dereceden bir denklemin tüm köklerini reel sayı veya kompleks sayı olarak verir.

Not 1:\(a\ne0\) olmalı

Not 2:Eğer katsayı reel sayı ise birinci kutucuğa reel sayı yazılacak, ikinci kutucuk sıfır olacak, Eğer katsayı kompleks sayı ise sayının reel kısmı birinci kutucuğa, sanal yada imaj kısmı ikinci kutucuğa yazılacaktır.

Denklemin katsayıları :
\(a=\)+ \(i\)
\(b=\)+ \(i\)
\(c=\)+ \(i\)
\(d=\)+ \(i\)

(1) ve (2) nolu formüllerden \(\alpha\) ve \(\beta\) bulunur. Bulunan bu değerlerden \(\Delta\) değerine ulaşılır. \(\alpha\), \(\beta\) ve \(\Delta\) değerlerinden \(x_1\), \(x_2\) ve \(x_3\) köklerine ulaşılır. Formüldeki \(i\) sayısı kompleks sayıdır ve \(i=\sqrt{-1}\) değerine eşittir. \begin{equation} \alpha=\frac{d}{2a} + \frac{b^3}{27a^3} - \frac{bc}{6a^2} \end{equation} \begin{equation} \beta=\frac{c}{3a} -\frac{b^2}{9a^2} \end{equation} \begin{equation} \Delta= \sqrt{\alpha^2 + \beta^3}-\alpha \end{equation} \begin{equation} x_1= \sqrt[3]{\Delta} -\frac{b}{3a} - \frac{\beta}{\sqrt[3]{\Delta}} \end{equation} \begin{equation} \begin{array}{ll} x_2 &=\displaystyle \frac{\beta}{2 \sqrt[3]{\Delta }} -\frac{b}{3a}-\frac{1}{2}\sqrt[3]{\Delta} \\ &-\displaystyle \frac{\sqrt{3}}{2}\left\{\displaystyle \frac{\beta}{\sqrt[3]{\Delta }} + \sqrt[3]{\Delta }\right\} i \end{array} \end{equation} \begin{equation} \begin{array}{ll} x_3 &=\displaystyle \frac{\beta}{2 \sqrt[3]{\Delta}} -\frac{b}{3a}-\frac{1}{2}\sqrt[3]{\Delta } \\ &+\displaystyle \frac{\sqrt{3}}{2}\left\{\displaystyle \frac{\beta}{\sqrt[3]{\Delta}} + \sqrt[3]{\Delta }\right\} i \end{array} \end{equation}
beyaz_sayfa_en_alt_oval

Dökümanlar    Ürün ve Hizmetler    Hesaplamalar    Birim Çevir    Referanslar    İletişim

Boru Hesapları    Baca Hesapları    Havalandırma Kanalı    Soğutma, Klima    Denklem Çözümleri    Matematik Formülleri

Kenan KILIÇASLAN 2012© Tüm Hakları Saklıdır.       Designed by Nuit                                                                          English